
Hardware hacking on a budget; the Amstrad E3

Jonathan McDowell <noodles@earth.li>

June 12, 2006

Introduction

There has long been a perception that the skills and resources to work on inter-
esting hardware projects are available only to a select group of hackers. While
this may have been true in the past there are a large number of consumer de-
vices coming to market that are based upon Linux. As a result it’s becoming
easier and easier for anyone with some programming experience to get involved
with hardware and embedded systems programming. This paper intends to ex-
plain how to get started with such a project and use a case study involving the
Amstrad E3 videophone to illustrate the various steps.

The Plan of Attack

Your first ports of call once you’ve got your hardware should be the manu-
facturer’s website and a search engine. You’re looking for a copy of the GPL
source used on the device and any details about the components used you can
find. If you can find a list of the chips used then you can start to look for their
datasheets, which will help with figuring out what they do, how they might be
hooked up and how to program them. If you can’t find such a list then consider
opening up the device and physically inspecting it. Take pictures - when you’ve
put it all back together and realised you’ve forgotten to check something you’ll
be glad of them.

See if you can find other people working on the same device. Never under-
estimate the power of the community. If you can’t find anyone else working
on it then put up some details about what you’ve discovered so far. Even a
basic website pulling together all the information you’ve gathered can help and
it means the next person who starts on the same project will hopefully be able
to find you and combine efforts.

The hardest part could well be finding the console; this may require some
physical disassembly and soldering in order to let you connect to a serial port on
the device. However this allows you to view the bootloader and kernel messages
and is invaluable. If you’ve no previous electronics experience don’t be put off
by this - eBay can sometimes provide pre-assembled cables, or your device may
have something that’s easily accessible.

Look for similar projects. See if there’s mainstream Linux support for the
CPU. If not, then is there a maintained tree that does support it? You want to
avoid reinventing the wheel, so any existing support you can build on will help.

1



Finally, once you’re done you should try to feed any patches you have back
to upstream.

A Case Study: The Amstrad E3

This paper intends to use the work on the Amstrad E31 to illustrate the various
steps of hardware hacking. The E3 is a desktop videophone that connects to
a normal phone line, currently available on the UK high street for around £30
(having previously been sold for £100). Amstrad subsidise the cost of the hard-
ware by means of requiring it make a daily premium rate phone call to remain
operational.

As a desktop videophone the E3 presents an attractive form factor for modifi-
cation. It features a 480x320 LCD screen (unfortunately only DSTN), a camera,
a handset and both an on device keypad and a pull out ‘mailboard’ QWERTY
keyboard. A TI OMAP59102 dual core ARM/DSP powers the device and is
paired with 32MB of NAND flash and 32MB SDRAM. Of particular benefit to
the would be modifier is the provision of a serial port on the back. This allows
us to begin work without even having to disassemble the device.

Get the source

Amstrad make the offer for the kernel source used on the E3 as part of the initial
introductory email the customer receives upon registering the device. They
charge £25 (payable only by cheque; there is no known way to obtain the source
online from Amstrad even with a card payment) to cover their administration
and distribution costs. In return for this fee they send a CDR containing a 2.4.18
based tree. At first glance this appears to be the right thing; it has mentions of
the Amstrad Delta (the codename for the E3) as well config options for some of
the various hardware used.

Closer examination revealed that the source was in fact not what was used
to build the kernel the E3 ships with. In addition to the cosmetic issue that the
source is version 2.4.18 mvl30-E3 while the boot log of an E3 shows 2.4.18 mvl30-
ams-delta the E3 boot log clearly shows a dfdblk/MFS-DFD driver compiled
into the kernel, providing access to the NAND flash where the root filesystem
lives. There is no sign of this driver in the supplied source.

(This is a GPL violation on Amstrad’s part. Although they were contacted
in January 2005 about the issue and refunded the author’s £25 payment there
has been no resolution at the time of writing. It is not expected there ever will
be and an alternative Free driver for the NAND has already been accepted into
the linux-mtd git tree.)

The lack of complete source is not unusual. In most cases there are binary
modules handling proprietary parts of the device (e.g. wireless drivers). If
you’re lucky there will already be projects working on a Free driver (such as the
bcm43xx driver for Broadcom wireless chipsets). If not then it may be possible
to obtain a datasheet that provides enough information to write a driver. And
either way whatever you can get of the source used will help, even if there are
missing sections.

1http://www.amstrad.com/products/emailers/e3.html
2http://focus.ti.com/docs/prod/folders/print/omap5910.html

2

http://www.amstrad.com/products/emailers/e3.html
http://focus.ti.com/docs/prod/folders/print/omap5910.html


Examine your device

The next task was to work out what was driving the E3. The device was disas-
sembled and the PCB examined. A TI OMAP 5910 (ARM9 + DSP dual core),
128KB NOR flash, 32MB NAND flash, 32MB SDRAM, a hardware Conexant
modem and a Phillips smartcard reader were all observed and model numbers
noted.

Datasheets for these parts were then searched for. In particular TI have a
rich range of documentation for the OMAP cores available for download, which
made working on the device a lot easier than it could have been.

See who else is out there

Although the author had discussed the E3 with some friends before purchasing
his, he was unaware of anyone else who had such a device. His investigations
into other groups who might have been working on the same project led him to
Ralph Corderoy’s website3 about the E-mailer Plus, an earlier Amstrad desktop
smartphone. While the hardware in the Plus and E3 differs quite considerably
(the Plus has a grayscale screen, an earlier ARM core that doesn’t have an
MMU, as well as less memory) it seemed likely that Amstrad would have reused
some of the same techniques from the Plus on the E3. This eventually turned
out to be the case, especially in the area of the primary boot loader, which was
instrumental in providing a way of easily getting code onto the device.

Find a console

If your device is running Linux the chances are high it has a serial console
somewhere (if it doesn’t have an alternative display device that might be used).
Most embedded CPUs have at least one serial port on chip these days and these
are thus frequently configured up as the Linux console. If you’re lucky the serial
console will provide you access to a bootloader and shell. It’ll also let you see
the boot messages which can provide some insight into how things are setup.

For example, many of the consumer routers that run Linux have a bootloader
which will allow you to tftp a new kernel to RAM, allowing easy testing without
having to repeatedly reflash firmware.

The E3 serial port presents as a 3.5mm jack socket (i.e. a headphone style
socket) on the rear. This requires only a simple 3 wire cable to connect it up to
a normal PC serial port, which make it very easy to get up and running.

However once the serial console was discovered it didn’t provide any easy
way to affect the boot process, or even end up at a shell after booting. It did at
least provide some information about the steps involved in the E3 boot which
was useful though. And when the process of interacting with the boot loader
was figured out it has become the method used to replace the Amstrad supplied
firmware.

3http://inputplus.co.uk/ralph/emailer/

3

http://inputplus.co.uk/ralph/emailer/


Share and Enjoy

A basic webpage4 describing the E3 and the parts used in it, as well as linking
to the publicly available datasheets and kernel source Amstrad had provided
was setup. In addition a mailing list5 was created, originally for discussion of
just the E3 but quickly expanded to include discussion about earlier models.

The list discussion originally revolved around getting the Plus to run user
supplied code; both in terms of the protocol for talking to PBL and then also
about the format of the code blocks that were executed from flash. Both of
these turned out to be applicable to the E3, with Amstrad having used the
same concepts with only slight modifications.

There was also a long period of stagnation with progress in achieving any-
thing, once shell access had been obtained. At this point it was possible to
obtain shell access to the device with the 2.4.18 Amstrad kernel, but no easy
way to store files to the flash device. And even at this stage (mid 2005) 2.4.18
was somewhat ancient.

All this changed in early 2006 when some new people became interested in
the E3 and found the list. In particular Mark Underwood took the knowledge
that had already been gained and managed to get u-boot6 and 2.6.15-omap1
booting. This was real progress and catalysed the project into further E3 de-
velopment. If the list hadn’t existed (with archives that Mark was able to look
through) it is unlikely Mark would have been able to get going so quickly, nor
that it would have been found by as many people.

More recently we’ve had an IRC channel, which has proved useful for some
general chat about approaches but isn’t quite as useful for newcomers as the list
archives.

When in doubt, disassemble

Sometimes you just get stuck. There’s no datasheet for the chip you want to
talk to, there’s no source for the driver that’s currently in use, and you’re stuck
with an ancient/buggy kernel as a result.

While not necessarily as fully featured as commercially available tools, obj-
dump is quite able to provide a disassembly of many architectures (and indeed,
if the platform is running Linux it’s highly unlikely objdump won’t be able to
deal with it). The thought of having to wade through the disassembly of 64k+
of code probably doesn’t sound appealing, but it’s not as bad as you might
think. In particular, all you’re trying to do is understand what’s going on; not
code in assembly yourself.

For the E3 the initial application of this was for the primary boot loader.
Someone had desoldered the flash ROM and read the contents, providing an
image of PBL that could be worked on. A similar process had been used for the
Emailer Plus. The E3 disassembly indicated that the bootloader communication
protocol was very similar to that used in the Plus. In addition it provided details
about the checks used to verify the blocks stored in flash (whose format had
again been decoded by those working on the Plus, but had slightly different
parameters due to the hardware differences).

4http://www.earth.li/ noodles/hardware-e3.html
5http://www.earth.li/cgi-bin/mailman/listinfo/e3-hacking
6http://u-boot.sourceforge.net/

4

http://www.earth.li/~noodles/hardware-e3.html
http://www.earth.li/cgi-bin/mailman/listinfo/e3-hacking
http://u-boot.sourceforge.net/


Later on disassembly was used to work out how to talk to the NAND flash. A
datasheet was available for the part, but it wasn’t known how it was connected
to the processor. Amstrad had left a module of the driver on the E3 filesystem,
despite it being compiled into the kernel. Checking the part of the initialisation
routine where the chip was identified and comparing to the datasheet was enough
to find out which I/O pins the chip control lines were connected to. Armed
with this information writing a driver within the Linux MTD framework was
comparatively easy.

It’s important to note that disassembly can be illegal in some jurisdiction,
whereas others allow it for the purposes of interoperability. ‘Clean room’ tech-
niques are sometimes adopted for complicated instances, where one person/team
will perform the disassembly and document the interfaces/hardware and then
another will use the documentation to write a new clean driver. As they’ll never
have seen the original code this helps avoid claims of copyright infringement.
So far for the E3 this hasn’t been necessary; initial disassembly was purely to
work out how to talk to PBL, and then to work out the control lines for the
NAND, rather than anything more complicated in terms of writing drivers.

Don’t reinvent the wheel

It’s important not to waste your energy on already solved problems. If you can
find an existing project to base your work on then it’s more likely you’ll be able
to push changes upstream.

For the E3 the linux-omap7 project was the logical place to look, as it already
supported the processor used. Support was already present in mainline 2.6
kernels, but there was additional support and drivers present in the -omap tree.
For example, they already had a framebuffer driver for the OMAP LCD driver,
which meant that adding support for the E3’s screen became a lot less work.

Also for userland both buildroot8 and OpenEmbedded9 have been used in the
E3 development. These provide an easy way to get a cross compiling toolchain
and initial root filesystem image built.

If it had been required to add support for the OMAP core to Linux, or
produce a cross building environment it would have taken a lot more effort.
Being able to use these existing projects certainly made life a lot easier.

Push back to upstream

This goes hand in hand with not reinventing the wheel. If you end up needing
to produce patches in order to make your device work, do try to push them
back to upstream. As well as meaning that others can get hold of your work a
lot more easily it’s also provides you with several benefits.

Firstly, it provides more eyes to look at your code, from people who know
the area your code touches and who might be able to provide some constructive
criticism about it, or confirm it’s on the right track.

Secondly it gives you less baggage to carry around; rather than having to re-
base your patches against each new release if your changes are part of upstream

7http://linux.omap.com/mailman/listinfo/linux-omap-open-source
8http://buildroot.uclibc.org/
9http://www.openembedded.org/

5

http://linux.omap.com/mailman/listinfo/linux-omap-open-source
http://buildroot.uclibc.org/
http://www.openembedded.org/


it’s much more likely they’ll continue to work. Too often hardware manufactur-
ers choose a particular kernel version and stick with it, rather than trying to
get their changes in mainline.

At the time of writing base support for the E3 has been accepted into the
mainline kernel. Patches for the LCD have been submitted to the linux-omap
tree (one of Mark’s has already been accepted), while patches for the NAND
and LEDs have already been accepted into subsystem trees. David Ford’s work
on OpenEmbedded has been committed to their monotone repo. It is hoped
that further patches for u-boot and OPIE will be ready for submission soon,
with the ultimate aim being that no out of tree patches are required in order to
support the device.

Conclusion

The author hopes that the case study outlined in this paper has showed showed
that hardware hacking is an easier task to get involved in than you may have
thought. Even without having a lot of hardware experience it can be possible
to provide a useful contribution to a project similar to the E3, or even get one
started yourself. There are more and more Linux powered devices available on
the high street providing lots of opportunities for anyone who wants to work on
this often neglected area.

Further links

There are a number of hardware projects already out there that may provide
the reader with some further useful reading material or ideas about how to go
about hardware hacking.

• OpenWRT10

A Linux distribution for wireless routers. Originally started for the Linksys
WRT range it now supports a wide range of consumer kit.

• NSLU211

This project concentrates on various network attached storage devices.

• Linksys WMA11B12

Andrew Wild’s work on the Linksys WMA11B, a wireless media player.

• OpenEZX13

The OpenEZX project tries to gather information about the Linux-based
Motorola EZX phone platform (mainly the A780, E680 and E680i phones).

• Xanadux14

Porting Linux to HTC smartphones (eg Orange M5000, O2 XDA).

10http://openwrt.org/
11http://www.nslu2-linux.org/wiki/
12http://www-jcsu.jesus.cam.ac.uk/ acw43/projects/wma11b/
13http://openezx.org/
14http://wiki.xda-developers.com/index.php?pagename=Xanadux

6

http://openwrt.org/
http://www.nslu2-linux.org/wiki/
http://www-jcsu.jesus.cam.ac.uk/~acw43/projects/wma11b/
http://openezx.org/
http://wiki.xda-developers.com/index.php?pagename=Xanadux

