
OMAP5910 Dual-Core Processor
MPU Subsystems
Reference Guide

Literature Number: SPRU671
October 2003

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale
in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from
a third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by
TI for that product or service voids all express and any implied warranties for the associated TI product
or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

5OMAP5910SPRU671

Preface

Read This First

About This Manual

This document describes the core, caches, memory management units
(MMUs), interface, and bridges of the OMAP5910 multimedia processor
microprocessor unit (MPU) subsystem.

Notational Conventions

This document uses the following conventions.

� Hexadecimal numbers are shown with the suffix h. For example, the
following number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the OMAP5910 device and related
peripherals. Copies of these documents are available on the Internet at
www.ti.com. Tip: Enter the literature number in the search box provided at
www.ti.com.

OMAP5910 Dual-Core Processor MPU Subsystem Reference Guide (litera-
ture number SPRU671)

OMAP5910 Dual-Core Processor DSP Subsystem Reference Guide
(literature number SPRU672)

OMAP5910 Dual-Core Processor Memory Interface Traffic Controller
Reference Guide (literature number SPRU673)

OMAP5910 Dual-Core Processor System DMA Controller Reference Guide
(literature number SPRU674)

OMAP5910 Dual-Core Processor LCD Controller Reference Guide (litera-
ture number SPRU675)

OMAP5910 Dual-Core Processor Universal Asynchronous
Receiver/Transmitter (UART) Devices Reference Guide (literature number
SPRU676)

http://www-s.ti.com/sc/techlit/spru671
http://www-s.ti.com/sc/techlit/spru672
http://www-s.ti.com/sc/techlit/spru673
http://www-s.ti.com/sc/techlit/spru674
http://www-s.ti.com/sc/techlit/spru675
http://www-s.ti.com/sc/techlit/spru676

Trademarks

6 OMAP5910 SPRU671

OMAP5910 Dual-Core Processor Universal Serial Bus (USB) and Frame
Adjustment Counter (FAC) Reference Guide (literature number SPRU677)

OMAP5910 Dual-Core Processor Clock Generation and System Reset
Management Reference Guide (literature number SPRU678)

OMAP5910 Dual-Core Processor General-Purpose Input/Output (GPIO)
Reference Guide (literature number SPRU679)

OMAP5910 Dual-Core Processor MMC/SD Reference Guide (literature
number SPRU680)

OMAP5910 Dual-Core Processor Inter-Integrated Circuit (I2C) Controller
Reference Guide (literature number SPRU681)

OMAP5910 Dual-Core Processor Timer Reference Guide (literature number
SPRU682)

OMAP5910 Dual-Core Processor Inter-Processor Communication
Reference Guide (literature number SPRU683)

OMAP5910 Dual-Core Processor Camera Interface Reference Guide
(literature number SPRU684)

OMAP5905 Dual-Core Processor Multichannel Serial Interface (MCSI)
Reference Guide (literature number SPRU685)

OMAP5910 Dual-Core Processor Micro-Wire Interface Reference Guide
(literature number SPRU686)

OMAP5910 Dual-Core Processor Real-Time Clock (RTC) Reference Guide
(literature number SPRU687)

OMAP5910 Dual-Core Processor HDQ/1-Wire Interface Reference Guide
(literature number SPRU688)

OMAP5910 Dual-Core Processor PWL, PWT, and LED Peripheral
Reference Guide (literature number SPRU689)

OMAP5910 Dual-Core Processor Multichannel Buffered Serial Port (McBSP)
Reference Guide (literature number SPRU708)

Trademarks

OMAP and the OMAP symbol are trademarks of Texas Instruments.

Related Documentation From Texas Instruments / Trademarks

http://www-s.ti.com/sc/techlit/spru677
http://www-s.ti.com/sc/techlit/spru678
http://www-s.ti.com/sc/techlit/spru679
http://www-s.ti.com/sc/techlit/spru680
http://www-s.ti.com/sc/techlit/spru681
http://www-s.ti.com/sc/techlit/spru682
http://www-s.ti.com/sc/techlit/spru683
http://www-s.ti.com/sc/techlit/spru684
http://www-s.ti.com/sc/techlit/spru685
http://www-s.ti.com/sc/techlit/spru686
http://www-s.ti.com/sc/techlit/spru687
http://www-s.ti.com/sc/techlit/spru688
http://www-s.ti.com/sc/techlit/spru689
http://www-s.ti.com/sc/techlit/spru708

Contents

7SPRU671

Contents

1 Introduction 11.

2 MPU Core 12.

3 Instruction Cache 13.
3.1 Operation 13.
3.2 Validity 13.

4 Data Cache 14.
4.1 D-Cache Operation 14.
4.2 Validity 15.
4.3 Double-Mapped Space 16.

5 Write Buffer 16.
5.1 Operation 17.
5.2 SWAP Instruction 17.

6 Coprocessor 15 18.
6.1 CP15 Access 18.
6.2 Register Descriptions 18.

6.2.1 ID Register and Cache Information Register 19.
6.2.2 Cache Operations 27.
6.2.3 TLB Operations 29.
6.2.4 TLB Lock-Down Registers 29.
6.2.5 Context Switch (or PID: Process Identifier) Register 31.
6.2.6 TI Operations 31.

7 MPU Memory Management Unit 34.
7.1 Translation Look-Aside Buffer 34.
7.2 Translation Table 35.
7.3 Domains and Access Permissions 35.
7.4 MMU Program-Accessible Registers 36.
7.5 Address Translation 36.
7.6 Translation Process 37.

7.6.1 Translation Table Base 38.
7.6.2 Level-1 Fetch 38.
7.6.3 Level-1 Descriptor 39.

Contents

8 SPRU671

7.6.4 Translating Section References 41.
7.6.5 Level-2 Descriptor 42.
7.6.6 Translating Tiny Pages References 44.
7.6.7 Translating Small Page References 45.
7.6.8 Translating Large Page References 46.

7.7 MMU Faults and MPU Aborts 47.
7.8 Fault Address and Fault Status Registers (FAR and FSR) 48.
7.9 Domain Access Control 49.
7.10 Permission Access 50.
7.11 Fault Checking Sequence 51.

7.11.1 Alignment Fault 52.
7.11.2 Translation Fault 53.
7.11.3 Domain Fault 53.
7.11.4 Permission Fault 54.

7.12 External Aborts 54.
7.13 Buffered Writes 55.

8 DSP Memory Management Unit 55.

9 MPU Interface 63.
9.1 Functional Features 63.
9.2 MPUI Registers 65.

10 MPU TI Peripheral Bus Bridges 73.
10.1 8-Bit, 16-Bit, and 32-Bit Word Access 73.
10.2 TIPB Allocation 74.
10.3 Access Factor and Time-Out 74.
10.4 MPU Posted Write 75.
10.5 Pipeline Mode 75.
10.6 Abort 75.
10.7 TIPB Bridge Registers 75.

11 MPU Interrupt Handlers 78.
11.1 MPU Level-1 Interrupt Handler 78.
11.2 MPU Level 2 Interrupt Handler 80.

12 Level-1 and Level-2 Interrupt Mapping 81.

13 Interrupt Handler Level-1 and Level-2 Registers 84.

14 Configuration Module 88.
14.1 Configuration Register Capabilities 88.
14.2 OMAP5910 Native and Compatibility Modes 89.
14.3 OMAP5910 Generic Pin Multiplexing and Pullup/Pulldown Control 89.
14.4 OMAP5910 MMC/SD Pin Multiplexing 90.

15 OMAP5910 Configuration Registers 91.

16 Device Identification 134.
16.1 Identification Code Register 134.
16.2 Die Identification (ID) 135.

Contents

9SPRU671

17 MPU Private Peripherals Overview 135.

18 MPU Public Peripherals Overview 136.

19 MPU/DSP Peripherals Overview 137.

20 Endianism Conversion 138.
20.1 Conversion Through the DSP MMU 139.
20.2 Conversion Through the MPUI 141.

21 ETM Environment 142.
21.1 ETM Features 143.
21.2 ETM Interface 143.
21.3 Operation 144.
21.4 Additional Reference Materials 145.

Figures

10 SPRU671

Figures

1 Highlight of MPU Subsystem 12.
2 MRC, MCR Bit Pattern 18.
3 Format of the CP15 Translation Table Base Register 25.
4 Format of the CP15 Domain Access Control Register 25.
5 Format of the Fault Address Register 27.
6 D-Cache Clean/Flush Single Entry Operand Format 28.
7 Format of the Lock-Down Registers 30.
8 Format of the I_min and I_max Registers 33.
9 Format of the Thread-ID Register 33.
10 Address Translation Process 37.
11 Translation Table Base Register 38.
12 Accessing the Translation Table Level-1 Descriptors 39.
13 Level-1 Descriptors 39.
14 Section Translation 42.
15 Page Table Entry (Level-2 Descriptor) 43.
16 Tiny Page Translation 45.
17 Small Page Translation 46.
18 Large Page Translation 48.
19 Domain Access Control Register Format 50.
20 Sequence for Checking Faults 52.
21 Nonaligned Read-Word Access 53.
22 MPUI Simplified Block Diagram 63.
23 MPU TI Peripheral Bus Bridge Connections 73.
24 MPU Interrupt Handlers 79.
25 MPU Private Peripherals 136.
26 MPU Public Peripherals Area 137.
27 Highlight of MPU/DSP Peripherals 138.
28 DSP Endian Conversion, 32-Bit Aligned Data 141.
29 DSP Endian Conversion, MPUI Port Boundary 142.
30 Required System for ETM Usage 144.

Tables

11SPRU671

Tables

1 Data Cache Configuration 14.
2 Write Buffer Configuration 17.
3 CP15 Register Summary 19.
4 Reading From CP15 Register 0 20.
5 CP15 ID Register 20.
6 CP15 Cache Information Register (CIR) 20.
7 CP15 Control Register 22.
8 Domain Configuration 26.
9 CP15 Fault Status Register 26.
10 Cache Operations 27.
11 TLB Operations 29.
12 Lockdown Operations 30.
13 TI Operations 31.
14 TI925T Configuration Register 31.
15 TI925T_status Register 33.
16 CP15 Registers or Functions Used by the MMU 36.
17 Level-1 Fine Page Table Descriptor 40.
18 Interpreting Level-1 Descriptor Bits 1−0 40.
19 Level-1 Coarse Page Table Descriptor 41.
20 Level-1 Section Descriptor 41.
21 Level-2 Section Descriptor 43.
22 Interpreting Page Table Entry Bits 1−0 44.
23 Priority Encoding of the Fault Status Register 49.
24 Interpreting Access Bits in Domain Access Control Register 50.
25 Interpreting Access Permission 50.
26 DSP Memory Management Unit Registers 55.
27 Prefetch Register (PREFETCH_REG)) − Offset Address (hex): 00 56.
28 Prefetch Status Register (WALKING_ST_REG) − Offset Address (hex): 04 57.
29 Control Register (CNTL_REG) − Offset Address (hex): 08 57.
30 Fault Address Register MSB (FAULT_AD_H_REG) − Offset Address (hex): 0C 57.
31 Fault Address Register LSB (FAULT_AD_L_REG) − Offset Address (hex): 10 58.
32 Fault Status Register (F_ST_REG)) − Offset Address (hex): 14 58.
33 IT Acknowledge Register (IT_ACK_REG) − Offset Address (hex): 18 58.
34 TTB Register MSB (TTB_H_REG) − Offset Address (hex): 1C 58.
35 TTB Register LSB (TTB_L_REG) − Offset Address (hex): 20 59.
36 Lock Counter Register (LOCK_REG) − Offset Address (hex): 24 59.

Tables

12 SPRU671

37 Load Entry in TLB Register (LD_TLB_REG) − Offset Address (hex): 28 59.
38 CAM Entry Register MSB (CAM_H_REG) − Offset Address (hex): 2C 59.
39 CAM Entry Register LSB (CAM_L_REG) − Offset Address (hex): 30 60.
40 RAM Entry Register MSB (RAM_H_REG) − Offset Address (hex): 34 60.
41 RAM Entry Register LSB (RAM_L_REG) − Offset Address (hex): 38 60.
42 Global Flush Register (GFLUSH_REG) − Offset Address (hex): 3C 61.
43 Individual Flush Register (FLUSH_ENTRY_REG) − Offset Address (hex):40 61.
44 CAM Entry Register MSB (READ_CAM_H_REG) − Offset Address (hex): 44 61.
45 CAM Entry Register LSB (CAM_CAM_L_REG) − Offset Address (hex): 48 61.
46 RAM Entry Register MSB (READ_RAM_H_REG) − Offset Address (hex): 4C 62.
47 RAM Entry Register LSB (READ_RAM_L_REG) − Offset Address (hex): 50 62.
48 MPUI Registers 65.
49 Control Register (CTRL_REG) − Offset: x00 66.
50 Debug Address Register (DEBUG_ADDR) − Offset: x04 67.
51 Debug Data Register (DEBUG_DATA) − Offset: x08 68.
52 Debug Flag Register (DEBUG_FLAG) − Offset: x0C 68.
53 Status Register (STATUS_REG) − Offset: x10 69.
54 DSP Status Register (DSP_STATUS_REG) − Offset: x14 70.
55 DSP Boot Configuration Register (DSP_BOOT_CONFIG) − Offset: x18 71.
56 DSP MPUI Configuration Register (DSP_API_CONFIG) − Offset: x1C 72.
57 Decoding SARAM 0 Through SARAM 11 on 8K Boundaries 72.
58 Access Factor 74.
59 TIPB (Private) Bridge Registers 75.
60 TIPB (Public) Bridge Registers 76.
61 TIPB Control Register (TIPB_CNTL) − Offset: x00 76.
62 TIPB Bus Allocation Register (TIPB_BUS_ALLOC) − Offset: x04 76.
63 MPU TIPB Control Register (MPU_TIPB_CNTL_REG) − Offset: x08 77.
64 Enhanced TIPB Control Register (ENHANCED_TIPB_CNTL) − Offset: x0C 77.
65 Address Debug Register (ADDRESS_DBG) − Offset: x10 77.
66 Data Debug Register LSB (DATA_DEBUG_LOW) − Offset: x14 77.
67 Data Debug Register MSB (DATA_DEBUG_HIGH) − Offset: x18 77.
68 Debug Control Signals Register (DEBUG_CNTR_SIG) − Offset: x1C 78.
69 Level-1 and Level-2 OMAP5910 MPU Interrupt Mapping 81.
70 Interrupt Handler Registers 84.
71 Interrupt Input Register (ITR) 86.
72 Mask Interrupt Register (MIR) 86.
73 Binary-Coded Source IRQ Register (SIR_IRQ_CODE) 86.
74 Binary-Coded Source FIQ Register (SIR_FIQ_CODE) 87.
75 Control Register (CONTROL_REG) 87.
76 Interrupt Level Registers (ILR0...ILR31) 87.
77 Interrupt Set Register (ISR) 88.
78 Functional Pin Multiplexing Control Register 3

(FUNC_MUX_CTRL3...FUNC_MUX_CTRLD) 90.
79 Configuration Registers 91.

Tables

13SPRU671

80 Functional Multiplexing Control 0 Register (FUNC_MUX_CTRL_0) 92.
81 Functional Multiplexing Control 1 Register (FUNC_MUX_CTRL_1) 94.
82 Functional Multiplexing Control 2 Register (FUNC_MUX_CTRL_2) 95.
83 Compatibility Mode Control 0 Register (COMP_MODE_CTRL_0) 96.
84 Functional Multiplexing Control 3 Register (FUNC_MUX_CTRL_3) 96.
85 Functional Multiplexing Control 4 Register (FUNC_MUX_CTRL_4) 96.
86 Functional Multiplexing Control 5 Register (FUNC_MUX_CTRL_5) 97.
87 Functional Multiplexing Control 6 Register (FUNC_MUX_CTRL_6) 99.
88 Functional Multiplexing Control 7 Register (FUNC_MUX_CTRL_7) 101.
89 Functional Multiplexing Control 8 Register (FUNC_MUX_CTRL_8) 102.
90 Functional Multiplexing Control 9 Register (FUNC_MUX_CTRL_9) 103.
91 Functional Multiplexing Control A Register (FUNC_MUX_CTRL_A) 104.
92 Functional Multiplexing Control B Register (FUNC_MUX_CTRL_B) 105.
93 Functional Multiplexing Control C Register (FUNC_MUX_CTRL_C) 106.
94 Functional Multiplexing Control D Register (FUNC_MUX_CTRL_D) 108.
95 Pulldown Control 0 Register (PULL_DWN_CTRL_0) 108.
96 Pulldown Control 1 Register (PULL_DWN_CTRL_1) 110.
97 Pulldown Control 2 Register (PULL_DWN_CTRL_2) 116.
98 Pulldown Control 3 Register (PULL_DWN_CTRL_3) 122.
99 Gate and Inhibit Control 0 Register (GATE_INH_CTRL_0) 124.
100 Voltage Control 0 Register (VOLTAGE_CTRL_0) 126.
101 Test Debug Control 0 Register (TEST_DBG_CTRL_0) 127.
102 Module Configuration Control 0 Register (MOD_CONF_CTRL_0) 127.
103 ID Code Register (IDCODE) 134.
104 ID Code Register (IDCODE) Bits 134.
105 Die ID Address Space—Private TIPB Bridge 135.
106 Little-Endian Data Format 139.
107 Big-Endian Format 139.
108 DSP Data Format 140.

14 SPRU671

15MPU SubsystemsSPRU671

MPU Subsystems

This document describes the core, caches, memory management units
(MMUs), interface, and bridges of the OMAP5910 multimedia processor
microprocessor unit (MPU) subsystem.

1 Introduction

The MPU of the OMAP5910 device controls the memory management units
(MMUs), the system direct memory access (DMA) controller, the MPU TI
peripheral bus (TIPB) bridge, and peripherals.

Figure 1 shows the OMAP5910 device with the MPU subsystem highlighted.
The subsystem contains the following components:

� MPU core (see Section 2, MPU Core)

� Traffic controller (see SPRU673, Memory Interface Traffic Controller
Reference Guide)

� MPU MMU (see Section 7, MPU Memory Management Unit)

� DSP MMU (see Section 8, DSP Memory Management Unit)

� System DMA controller (see SPRU674 , System DMA Controller
Reference Guide)

� LCD controller (see SPRU675, LCD Controller Reference Guide)

� MPU TIPB bridge (see Section 10, MPU TI Peripheral Bus Bridges)

� Clock manager (see SPRU678, Clock Generation and System Reset
Management Reference Guide)

� Interrupt handler (see Section 1. 11, MPU Interrupt Handler)

� Timers (see SPRU682, Timer Reference Guide)

� Watchdog timer (see SPRU682, Tmer Reference Guide)

� Interprocessor communication (see SPRU683, Interprocessor
Communication Reference Guide)

� 1.5M-bit SRAM internal memory

http://www-s.ti.com/sc/techlit/spru673
http://www-s.ti.com/sc/techlit/spru674
http://www-s.ti.com/sc/techlit/spru675
http://www-s.ti.com/sc/techlit/spru678
http://www-s.ti.com/sc/techlit/spru682
http://www-s.ti.com/sc/techlit/spru682
http://www-s.ti.com/sc/techlit/spru683

MPU Core

MPU Subsystems16 SPRU671

Figure 1. Highlight of MPU Subsystem

32
32

32
32 System

DMA
controller

E
M
I
F
S

F
F
I

E
M

F
I
M
I

Memory
interface

traffic
controller

(TC)

MPU bus

32

MPU
interface

32

32

DSP
MMU

TMS320C55x DSP
(instruction cache,

SARAM, DARAM, DMA,
H/W accelerators)

16

32

16
FLASH

and
SRAM

memories

memories
SDRAM 16

32

SRAM
1.5 M
bits

32

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

MPU
peripheral

bridge

32

ETM9
JTAG

emulation
I/F

LCD
I/F

16
32

Osc Osc

Clock and reset
management

12 MHz 32
KHz

Clock

Reset

External
clock
request

DSP private
peripherals
Timers (3)

Watchdog timer
Level1/2

interrupt handlers

DSP private
peripheral

bus
16

DSP public (shared) peripheral bus

MPU private
peripherals
Timers (3)

Watchdog timer
Level 1/2 interrupt

handlers
Configuration

registers
Device

identification

MPU private peripheral bus

32

DSP public peripherals

McBSP1

McBSP3

MCSI1
MCSI2

MPU/DSP shared peripherals

TIPB
switch

UART1
UART2

UART3 IrDA

Mailbox
GPIO I/F

16

USB host I/F

MPU public peripherals

McBSP2

USB function I/F

I2C
µWire

Camera I/F
MPUIO

32 KHz timer
PWT
PWL

Keyboard I/F
MMC/SD
LPG x2

Frame adjustment
counter

HDQ/t-WIRE
RTC

MPU public
peripheral

bus

OMAP5910

or 13 MHz

2 MPU Core
The MPU core is a TI925T reduced instruction set computer (RISC) processor.
The TI925T is a 32-bit processor core that performs 32-bit or 16-bit instructions
and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all
parts of the processor and memory system can operate continuously.

The MPU core incorporates:

� A co-processor 15 (CP15) and protection module

� Data and program memory management units (MMUs) with table
look-aside buffers.

� A separate 16K-byte instruction cache and 8K-byte data cache. Both are
two-way associative with virtual index virtual tag (VIVT).

Instruction Cache

17MPU SubsystemsSPRU671

� A 17-word write buffer (WB)

� A local bus interface

The OMAP5910 device uses the TI925T core in little-endian mode only.

To reduce effective memory access time, the TI925T has an instruction cache,
a data cache, and a write buffer. In general, these are transparent to program
execution.

3 Instruction Cache

The 16K-byte instruction cache (I-cache) has 1024 lines of 16 bytes arranged
as a two-way set-associative cache. It uses the virtual addresses generated
by the processor core. The I-cache is always reloaded one line at a time. It can
be enabled or disabled via the CP15 control register (I_CP15 bit) and is
disabled and flushed upon reset.

Disabling the I-cache does not invalidate it.

The I-cache can be independently enabled from the MMU.

3.1 Operation

When the I-cache is enabled, it is searched whenever the processor requests
an instruction. If the cache hits, data is returned to the core whether the MMU
is enabled or not. If a cache read misses, a line fetch is performed and data
is written to the cache following a least recently used (LRU) replacement
algorithm. For best performance, enable the I-cache as soon as possible after
reset. If the I-cache is disabled, it is not searched. All instruction fetches
generate a single 16-bit or 32-bit external access. An instruction miss
generates line load. The LOAD_MULTIPLE instruction does not perform a
burst read.

3.2 Validity

The flush I-cache instruction is fetched at cycle time 0, for example, but not
executed until cycle time 4 (the TI925T uses a five-stage opcode pipe). Thus,
four additional opcodes may be fetched from the I-cache before the flush
I-cache opcode is executed. Once executed, the entire I-cache is invalidated
before the next opcode executes. Typically, four non-opcodes following the
CP15 instruction flush the cache to avoid confusion.

The I-cache content is not flushed when the I-cache is disabled. Its contents
remain valid and are accessible again when the I-cache is reenabled.

Data Cache

MPU Subsystems18 SPRU671

4 Data Cache

The 8K byte data cache (D-cache) has 512 lines of 16 bytes arranged as a
two-way set-associative cache. It uses the virtual addresses generated by the
processor. The D-cache is always reloaded one line at a time, because it
always requires the MMU to be enabled. The D-cache is always disabled when
the MMU is off. The MMU can operate in write-through (WT) or in copy-back
(CB) mode. The translation lookaside buffer (TLB) descriptors that are placed
in memory determine which mode is used.

The D-cache can be enabled or disabled via the CP15 control register: the
D-cache is disabled and flushed upon reset. The D-cache supports byte,
half-word, and word accesses.

4.1 D-Cache Operation

If the D-cache is enabled (C_CP15 = 1), it is searched whenever the processor
performs a data load or store. If the cache hits on a load, data is returned to
the core regardless of the C_MMU bit. If a cache read misses, the C_MMU bit
is examined. If it is 1, a line fetch is performed and the line is written to the cache
following an LRU (least recently used) replacement algorithm. If C_MMU is 0,
a single external access is performed and the cache is not updated. Stores that
hit the D-cache always update it, regardless of the C_MMU bit, to keep the
D-cache contents consistent with the external memory. Stores that miss do not
update the D-cache (see Table 1).

Table 1. Data Cache Configuration

C_CP15 C_MMU B_MMU Functional Description

0 X X No cache search

1 0 X Cache search active

• Read and write misses are not cached.

• Cache serves read hits.

• Write hits update the cache.

• Read misses and writes generate external accesses.

Data Cache

19MPU SubsystemsSPRU671

Table 1. Data Cache Configuration (Continued)

C_CP15 Functional DescriptionB_MMUC_MMU

1 1 0 Cache search active: write-through mode (WT)

• Read hits do not generate external accesses.

• Write hits update the cache and the external memory.

• Read misses cause a line load.

• Write misses generate external accesses.

1 1 1 Cache search active: copy-back mode (CB)

• Read and write hits do not perform external accesses.

• Read misses cause a line load.

• Write misses do not update the cache, and they generate an external
access.

If C_CP15 = 0, the D-cache is disabled and it is not searched. If a memory
region is changed from cacheable to noncacheable and data must come from
external memory, the cache must be flushed.

4.2 Validity

The D-cache always requires that the MMU be enabled, so virtual addresses
are always in use. The TLB descriptors in memory can be cached or not
cached. When software is switching virtual address maps, it is necessary to
invalidate the data cache so that the wrong data value is not returned (that is,
so that a false D-cache hit does not occur). To do this, the CP15 register allows
software to invalidate the entire D-cache. As noted before, disabling the
D-cache and reenabling it does not invalidate it.

If the CB mode is used (see Table 1), software must first clean the cache to
make it coherent with main memory (this is not necessary in the WT mode,
because main memory is continuously updated as the data cache is used).

For CB mode, the VIVT (Virtual Index Virtual Tag) algorithm must be used if
software is to avoid missing interrupts during the clean operation. Timer
interrupts, for example, can be missed.

To avoid missing timer interrupts, the hardware clean operation can be
interrupted for the software algorithm to check the min/max registers (CP15
registers) to determine if the clean operation has completed. If not, it must
repeat the operation until complete.

Write Buffer

MPU Subsystems20 SPRU671

Note:

Cleaning (discarding cache data completely) is not the same as flushing
(temporarily cleaning a cache by writing data to disk or out-of-cache
memory).

The entire D-cache can be invalidated with a single flush D-cache instruction
through the CP15 cache operation register. The D-cache is flushed upon
reset.

If the D-cache is disabled, its content is maintained valid and is accessible
when the cache is reenabled.

4.3 Double-Mapped Space

The D-cache works with virtual addresses, and it is assumed that every virtual
address maps to a different physical address. If more than one virtual address
corresponds to the same physical location, the cache cannot maintain its
consistency because each virtual address has a separate entry in the cache
and only one entry is updated on a processor write operation. To avoid any
cache inconsistency, double-mapped virtual addresses must be marked as
un-cacheable.

5 Write Buffer

The write buffer (WB) increases system performance and can buffer up to
seventeen 32-bit words of data. The MMU attributes B (B_MMU) and C
(C_MMU) (which are part of the TLB descriptor) and the CP15 control register
W bit (W_CP15) control WB behavior.

Clearing W_CP15 and C_CP15 upon reset ensures that all accesses are
nonbufferable until the MMU is enabled. To use the write buffer, MMU must be
enabled. The write buffer is always disabled when the MMU is off. However,
the two functions can be enabled simultaneously with a single write to the
CP15 control register.

Clearing bit 3 in the CP15 control register disables the write buffer. Any writes
already in the write buffer complete normally.

It is not possible to abort buffered writes externally, because the s_abort
external signal is ignored and data is simply discarded. Areas of memory that
can generate aborts must be marked as unbufferable in the MMU page tables.

Data Cache / Write Buffer

Write Buffer

21MPU SubsystemsSPRU671

5.1 Operation

The WB operation is controlled by four control bits, as shown in Table 2.

Table 2. Write Buffer Configuration

C_CP15 W_CP15 C_MMU B_MMU Functional Description

0 0 X x

0 1 X 0 Writes are not buffered.

1 0 X x See Note

1 1 0 0

0 1 X 1 Non-cacheable, buffered (NCB)

1 1 0 1 NCB

1 1 1 0 Writes are buffered, write-through mode.

1 1 1 1 Writes are buffered, copy-back mode.

Note: In copy-back mode with the WB disabled (1011 configuration), dirty lines are saved to the external memory via the WB
regardless of W_CP15. Write misses go directly to the external memory. If the WB is disabled and the system is config-
ured in copy-back mode, only write misses stall the system.

When writes are not buffered, the processor stalls until the external write
access is complete.

5.2 SWAP Instruction

When bit L of the CP15 TI925T configuration register is set, the write phase
of the SWAP instruction (interlocked read-write) is treated as unbuffered when
data belongs to a non-cacheable, non-buffered (NCNB) or NCB region, even
if it is marked as buffered. The S_LOCK signal is active through the read and
write accesses. If the read of the SWAP instruction hits the cache, S_LOCK
is asserted during the read despite the fact that no external access is
performed. The write is performed both in the cache and externally with
S_LOCK active.

For WT- or CB-mode regions, S_LOCK is not active and accesses are
performed like ordinary read or write accesses.

When bit L of the CP15 TI925T configuration register is reset, S_LOCK stays
low during the SWAP instruction regardless of the memory region type (NCNB,

Coprocessor 15

MPU Subsystems22 SPRU671

NCB, WT, or CB). If marked as buffered, data is written to the write buffer and
reaches the system bus after an undetermined delay.

6 Coprocessor 15
TI925T operation and configuration are controlled with coprocessor
instructions, configuration pins, and the MMU translation tables. The
co-processor instructions manipulate on-chip registers, which control the
configuration of the cache memories, write buffer, MMU, and a number of other
options described in the following sections.

6.1 CP15 Access

The CP15 defines 16 registers. Table 3 shows the registers available for
reading and for writing. While most registers are used to control various
operations, some, such as register 0, only provide information. MRC and MCR
instructions can access CP15 registers in privileged mode only. Figure 2
contains the instruction bit pattern of the MCR and MRC instructions.

Figure 2. MRC, MCR Bit Pattern

31 28 27 24 23 22 21 20 19 18 17 16

Cond 1110 Opcode_1 L CRn

15 12 11 8 7 5 4 3 0

Rd 1111 Opcode_2 1 CRm

The CRn field specifies the coprocessor register to access. The CRm field and
opcode_2 fields specify a particular action when addressing some registers
or shadow registers. The TI925T takes the undefined instruction trap upon
executing CDP, LDC, STC, and unprivileged MCR/MRC instructions on CP15.

6.2 Register Descriptions

The following terms and abbreviations are used throughout the register
descriptions:

� Unpredictable (UNP): Reading from such a location returns data of
unpredictable value. Writing to this location causes unpredictable
behavior or an unpredictable change in device configuration.

� Undefined (UND): Any access to such registers makes TI925T take the
undefined instruction trap.

Coprocessor 15

23MPU SubsystemsSPRU671

� Should be zero (SBZ): All bits written to this field must be 0.

� Ignored: Writing to such a location does not affect the system behavior.

� VA: Virtual address (data or instruction)

In all cases, reading data values from or writing any data values to any CP15
register, including those fields specified as unpredictable or SBZ, causes no
permanent damage to the TI925T.

Table 3. CP15 Register Summary

Register Reads Writes Access RD

0 ID register Ignored Read-only 31..0

1 Control register Control register Read/Modify/Write 14..0

2 Translation table base Translation table base Read/Write 31..14

3 Domain access control Domain access control Read/Write 31..0

4 Unpredictable Ignored -

5 Fault status Fault status Read/Write 8..0

6 Fault address Fault address Read/Write 31..0

7 Unpredictable Cache operations Write-only 31..0

8 Unpredictable TLB operations Write-only 31..0

9 Unpredictable Ignored -

10 TLB lock-down TLB lock-down Read/Write 31..0

11 Unpredictable Ignored -

12 Unpredictable Ignored -

13 PID PID Read/Write 31..25

14 Unpredictable Ignored -

15 TI operations TI operations Read/Write 31..0

6.2.1 ID Register and Cache Information Register

Reading from CP15 register 0 returns either an identification defined by
architecture and implementation for the processor or information on the cache,
depending on the op-code_2 used. CRm should be zero (SBZ) when reading.

Writing to register 0 is ignored.

Coprocessor 15

MPU Subsystems24 SPRU671

Table 4. Reading From CP15 Register 0

Function Opcode_2 CRm Rd Instruction

Read ID† 0bXXX 0bXXXX TI925T ID MRC p15, 0, Rd, c0, c0, 0

Read CIR 0b001 0b0000 Cache info MRC p15, 0, Rd, c0, c0, 1

† All opcodes [opcode_2,CRm] except [1,0] return the TI925T ID.

Table 5. CP15 ID Register

Bits Field Description

31−24 Implementers Contains the ASCII code of the implementer trademark (0x54 = Texas
Instruments)

23−16 Architecture version Contains the architecture version (0x02 Version v4T)

15−4 Part number Contains a 3-digit part number in binary-coded decimal format.The OS bit
O in the TI925T configuration register sets the value of these fields as
follows:

915 in TI925T mode
925 in Windows CE mode

3−0 Reserved Contains the microprocessor revision number 2

Table 6. CP15 Cache Information Register (CIR)

Bits Field Value Description

31−29 Reserved 0 Read as 0.

28−25 Cache type Cache type: read as 0010. The cache provides clean-cache
entry and flush-cache-entry with a cache index in addition to
operations with a virtual address (also called clean-cache-step
or flush-cache-step). The format of the clean-cache-entry is
given in the Register 7: Cache Operations section later in this
document.

24 ID 0 Unified I-/D-cache

1 Harvard cache

23−21 Reserved 0 Read as 0.

20−18 D-cache information Base value of D-cache size (same format as for I-cache)

17−15 D-cache information Base value of D-cache associativity (same format as for I-cache)

Coprocessor 15

25MPU SubsystemsSPRU671

Table 6. CP15 Cache Information Register (CIR) (Continued)

Bits DescriptionValueField

14 D-Cache information Parameter to calculate the real D-cache associativity and size:

0 D-cache associativity and D-cache size = base value

1 D-cache associativity and D-cache size = 3/2 of the base value.
Exception: If base value of associativity is 1, a 1 indicates that
there is no D-cache and 0 indicates that D-cache is really
direct-map.

13−12 D-cache information Indicate line length of D-cache (same format as for I-cache)

11−9 Reserved 0 Read as 0.

8−6 I-cache information Base value of I-cache size:

0000 512 bytes

0001 1K byte

0010 2K bytes

0011 4K bytes

0100 8K bytes

0101 16K bytes

0110 32K bytes

0111 64K bytes

Note: 2 (bits 8−6 – bits 5−3 – bits 1−0) gives the number of
lines.

5−3 I-cache information Base value of I-cache associativity:

0000 Direct map

0001 2-way associative

0010 4-way associative

0011 8-way associative

0100 16-way associative

0101 32-way associative

0110 64-way associative

0111 128-way associative

Coprocessor 15

MPU Subsystems26 SPRU671

Table 6. CP15 Cache Information Register (CIR) (Continued)

Bits DescriptionValueField

2 I-cache information Parameter to calculate the real I-cache associativity and size:

0 I-cache associativity and I-cache size are equal to the base
value.

1 I-cache associativity and I-cache size are equal to 3/2 of the
base value. Exception: If base value of associativity is 1, a 1
indicates here that there is no I-cache; 0 indicates that the
I-cache is really a direct-map.

1−0 I-cache information Indicates line length of the I-cache:

00 8 bytes

01 16 bytes

10 32 bytes

11 64 bytes

The cache information register specifies the configuration of the TI925T core.
It is recommended that the register be written using a read-modify-write
routine.

Reading from CP15 register 1 reads the control bits. The CRm and opcode_2
fields are ignored when reading CP15 register 1, but must be zero.

Writing to CP15 register 1 sets the control bits. The CRm and opcode_2 fields
are not used when writing CP15 register 1, but must be zero.

All control bits but V are set to zero upon reset.

Table 7. CP15 Control Register

Bits Field Value Description

31−15 Reserved: These bits should not be relied upon for any particular value
in these bit locations during a read (they should be masked properly).
These bits should be written as zero.

14 0 Read as 0. Write is ignored.

13 V Alternate vector select. Sets the address of the exception vector from
address 0x00000000 to 0x0000001F when at zero and from
0xFFFF0000 to 0xFFFF001F when at 1. This bit takes the value of the
HIVECS signal port upon reset. After reset, it can be changed by
software.

Coprocessor 15

27MPU SubsystemsSPRU671

Table 7. CP15 Control Register (Continued)

Bits DescriptionValueField

12 1 Instruction cache enable/disable

0 Instruction cache disabled

1 Instruction cache enabled

11−10 0 Read as 0. Write is ignored.

9 R ROM protection. This bit modifies the MMU protection system (see
Table 24).

8 S System protection. This bit modifies the MMU protection system (see
Table 24).

7 B Little/big endian configuration. The TI925T on the OMAP5910 device
supports only little endian mode due to the system architecture of the
device. This bit must always be written as 0.

0 Little endian

1 Reserved (do not use)

6−4 1 Read as 1. Write is ignored.

3 W Write buffer enable/disable

2 C Data cache enable/disable

0 Data cache disabled

1 Data cache enabled

1 A Alignment fault enable/disable

0 Address alignment fault checking disabled

1 Address alignment fault checking enabled

Note: The alignment is checked only on data; code alignment is always
on a 32-bit boundary. If address alignment fault is enabled, words must
be word-aligned, and half-words must be half-word-aligned.

Coprocessor 15

MPU Subsystems28 SPRU671

Table 7. CP15 Control Register (Continued)

Bits DescriptionValueField

0 M Memory management unit (MMU) enable/disable

0 MMU disabled

1 MMU enabled

The MMU must be enabled before or at the same time as the data cache
(C) and write buffer (W). The instruction cache can be enabled
independently. When the MMU is disabled and no address translation
occurs, the D-cache and write buffer are forced OFF.

Note:

Care must be taken if the translated address differs from the non-translated
address, because the instructions following the enabling of the MMU are
fetched using no address translation. Enabling the MMU may be considered
as an instruction with delayed execution. A similar situation occurs when the
MMU is disabled.

The following code segment example shows correct MMU enabling which
takes into account the latency to transition to virtual addressing:

ldr r0, =bVirtualStart; Load r0 with virtual jump
location; Enable the MMU.

mrc p15, 0, r1, c1, c0, 0; Read the control register.

orr r1, r1, #BIT0; Set the M bit to enable MMU.

nop

mcr p15, 0, r1, c1, c0, 0; Write the control register.

mov pc, r0; Jump to the virtual address.

nop

bVirtualStart

nop

nop

The MMU, I-cache, and D-cache can be enabled or disabled independently.
If the data cache or write buffer are enabled when the MMU is not
enabled, the data cache and the write buffer stay off, preventing invalid
combinations.

The functions MMU, D-cache, I-cache, and WB can be enabled
simultaneously with a single write to the control register.

Coprocessor 15

29MPU SubsystemsSPRU671

Figure 3. Format of the CP15 Translation Table Base Register

31 14 13 0

Translation Table Base UNP/SBZ

Reading from CP15 register 2 returns the pointer to the currently active
first-level translation table in bits 31−14 and an unpredictable value in bits
13−0. The CRm and opcode_2 fields are SBZ when reading this register.

Writing to CP15 register 2 updates the pointer to the currently active first-level
translation table from the value in bits 31−14 of the written value. Bits 13−0
must be written as zero. The CRm and opcode_2 fields are SBZ when writing
to this register.

Figure 4. Format of the CP15 Domain Access Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

D15 D14 D13 D12 D11 D10 D9 D8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

Reading from CP15 register 3 returns the value of the domain access control
register. The CRm and opcode_2 fields are SBZ when reading this register.

Writing to CP15 register 3 writes the value of the domain access control
register.

The CRm and opcode_2 fields are SBZ when writing to this register.

The domain access control register consists of sixteen two-bit fields, each
defining the access permissions for one of the 16 domains (D15-D0). Table 8
gives more details on the meaning of each field.

Data, instructions, or both can use each of these domains. Two basic kinds of
users are supported: clients and managers.

Coprocessor 15

MPU Subsystems30 SPRU671

Table 8. Domain Configuration

Value Access Type Description

0b00 No access Any access generates a domain fault.

0b01 Client Access rights are checked against the permission given by the page
descriptor.

0b10 Reserved Behaves like no access

0b11 Manager The access rights are not checked; permission faults cannot be generated.

Reading CP15 register 5 returns the value of the fault status register (FSR).
The FSR contains the source of the last data fault. Only the bottom 9 bits are
returned. The top 23 bits are unpredictable. The FSR indicates the domain and
type of access being attempted when an abort occurred.

Table 9. CP15 Fault Status Register

Bits Field Description

31−9 UNP/SB Reserved: The values in these particular bit locations cannot be relied upon during
a read (they must be masked properly). These bits should be written as zero.

8 0 Read as 0.

7−4 Domain Specify which of the 16 domains (D15−D0) was being accessed when the last fault
occurred.

3−0 Status Indicate the type of fault due to the last access being attempted. The encoding of
these bits is shown in Table 23, Priority Encoding of the Fault Status Register.

The FSR is only updated for data access faults, not for instruction fetch faults. When
a fault occurs during a load or store multiple (LDM or STM instructions), the FSR
records the domain corresponding to the first fault caused by LDM or STM. For
example, an LDM performing 12 accesses may cross a page boundary with, say, four
accesses in one page and eight in the next page. If accessing the second page
causes an abort, the FSR and FAR record the information related to the fifth access.

The CRm and opcode_2 fields are SBZ when reading this register. Writing CP15
register 5 sets the fault status register to the value of the data written. The upper 24
bits written are SBZ. The CRm and opcode_2 fields are SBZ when writing to this
register.

Coprocessor 15

31MPU SubsystemsSPRU671

Figure 5. Format of the Fault Address Register

31 0

Fault Address

Reading CP15 register 6 returns the value of the fault address register (FAR).
The FAR holds the virtual address of the access that was attempted when a
fault occurred. The FAR is only updated for data access faults, not for
instruction fetch faults. When a fault occurs during a load or store multiple
(LDM or STM instructions), the FAR records the domain corresponding to the
first fault caused by LDM or STM (see example in FSR section above).

The CRm and opcode_2 fields are SBZ when reading this register. Writing
CP15 register 6 sets the fault address register to the value of the data written.
The CRm and opcode_2 fields are SBZ when writing to this register.

6.2.2 Cache Operations

The CP15 register 7 is a write-only pseudo-register managing the instruction
and data caches. Several cache operations are defined and are selected by
the opcode_2 and CRm fields.

Table 10. Cache Operations

Function Opcode_2 CRm Rd Instruction

Flush I- and D-cache 0b000 0b0111 SBZ MCR p15, 0, Rd, c7. c7, 0

Flush I-cache (1) 0b000 0b0101 SBZ MCR p15, 0, Rd, c7, c5, 0

Flush I-cache entry 0b001 0b0101 VA MCR p15, 0, Rd, c7, c5, 1

Flush D-cache (1, 2) 0b000 0b0110 SBZ MCR p15, 0, Rd, c7, c6, 0

Flush D-cache entry (2) 0b001 0b0110 VA MCR p15, 0, Rd, c7, c6, 1

Clean D-cache entry 0b001 0b1010 VA MCR p15, 0, Rd, c7, c10, 1

Clean and flush D-cache entry 0b001 0b1110 VA MCR p15, 0, Rd, c7, c14, 1

Flush D-cache entry (2) 0b010 0b0110 Set/Index (3) MCR p15, 0, Rd, c7, c6, 2

Notes: 1) Flush I- and D-cache operations invalidate all entries in the I-cache and D-cache respectively. The flush D-cache
also discards any dirty lines present in the D-cache.

2) The flush D-cache and D-cache entry operations do not clean the D-cache entries before they are invalidated.
A clean and flush D-cache requires two cache operations; there is a specific operation for cleaning and flushing
a D-cache entry at once. First clean then flush the entire cache; this requires two CP15 operations (bear in mind
the VIVT clean algorithm). You can clean and flush individual entries in one CP15 operation.

3) Figure 6 shows the format of the Rd value for all D-cache operations on a single entry.

4) TI925T supports high performance full cache clean operation with the VIVT algorithm.

Coprocessor 15

MPU Subsystems32 SPRU671

Table 10. Cache Operations (Continued)

Function InstructionRdCRmOpcode_2

Clean D-cache entry 0b010 0b1010 Set/Index (3) MCR p15, 0, Rd, c7, c10, 2

Clean and flush D-cache entry 0b010 0b1110 Set/Index (3) MCR p15, 0, Rd, c7, c14, 2

Clean D-cache (4) 0b000 0b1010 SBZ MCR p15, 0, Rd, c7, c10, 0

Prefetch I-line 0b001 0B1101 VA MCR p15, 0, Rd, c7, c13, 1

Wait-for-interrupt 0b100 0b0000 SBZ MCR p15, 0, Rd, c7, c0, 4

Drain write buffer 0b100 0b1010 SBZ MCR Rd, c7, c10, 4

Notes: 1) Flush I- and D-cache operations invalidate all entries in the I-cache and D-cache respectively. The flush D-cache
also discards any dirty lines present in the D-cache.

2) The flush D-cache and D-cache entry operations do not clean the D-cache entries before they are invalidated.
A clean and flush D-cache requires two cache operations; there is a specific operation for cleaning and flushing
a D-cache entry at once. First clean then flush the entire cache; this requires two CP15 operations (bear in mind
the VIVT clean algorithm). You can clean and flush individual entries in one CP15 operation.

3) Figure 6 shows the format of the Rd value for all D-cache operations on a single entry.

4) TI925T supports high performance full cache clean operation with the VIVT algorithm.

Figure 6. D-Cache Clean/Flush Single Entry Operand Format

31 X Y Z 0

A SBZ L SBZ

There are two valid fields. The A-field depends on the level of associativity of
the cache. The L-field depends on the number of lines per set.

The CIR register (cache information) provides all the information to calculate
x, y, and z following the equations below:

x = 32 – CIR[17−15] – CIR[14]

y = 8 + CIR[20−18] – CIR[17-15]

z = CIR[13−12] + 3

In addition, one bit (D-cache clean entry mode) of TI925T configuration
register allows cleaning of one entry in both sets at a time. D[31] becomes don’t
care when the D-cache clean entry mode is zero (see CP15 register 15
description). In this mode, the software clean operation just cleans one block
of virtual memory with an increment corresponding to the line size.

Coprocessor 15

33MPU SubsystemsSPRU671

6.2.3 TLB Operations

The CP15 register 8 is a write-only pseudoregister that manages the
translation look-aside buffers (TLBs). TI925T includes separate instruction
and data TLBs. Several TLB functions are defined and are selected by the
opcode_2 and CRm fields.

The flush-I and flush-D functions, respectively, flush (invalidate) all
unpreserved entries of the instruction and data TLB.

The flush entry functions flush a single entry of the TLB corresponding to the
virtual address present in Rd, regardless of its state (preserved/unpreserved).

All unused values of opcode_2 and CRm are ignored. Reading register 8 is
ignored.

Table 11. TLB Operations

Function Opcode_2 CRm Rd Instruction

Flush I TLB 0b000 0b0101 SBZ MCR p15, 0, Rd, c8, c5, 0

Flush I TLB entry 0b001 0b0101 VA MCR p15, 0, Rd, c8, c5, 1

Flush D TLB 0b000 0b0110 SBZ MCR p15, 0, Rd, c8, c6, 0

Flush D TLB 0b001 0b0110 VA VA MCR p15, 0, Rd, c8, c6, 1

Flush I + D TLB 0b000 0b0111 SBZ MCR p15, 0, Rd, c8, c7, 0

6.2.4 TLB Lock-Down Registers

There is a TLB lock down register for both TLBs; the value of opcode_2
determines which TLB register is accessed.

� Opcode_2 = 0 selects the register associated with the D-TLB.
� Opcode_2 = 1 selects the register associated with the I-TLB.

Each TLB has its own victim counter. These registers and counters are set to
zero upon reset.

Reading register 10 returns the value of the TLB victim counter base value
register, the current value of the victim counter, and the state of the preserved
bit. Bits 20−1 are unpredictable when read.

Writing to register 10 updates the base value, the current victim pointer, and
the preserved register value. Bits 20−1 are ignored on write but SBZ.

Coprocessor 15

MPU Subsystems34 SPRU671

Table 12. Lockdown Operations

Function Opcode_2 CRm Data Instruction

Read D-TLB lock 0b000 0b0000 Value MRC p15, 0, Rd, c10, c0, 0

Write D-TLB lock 0b000 0b0000 Value MCR p15, 0, Rd, c10, c0, 0

Read I-TLB lock 0b001 0b0000 Value MRC p15, 0, Rd, c10, c0, 1

Write I-TLB lock 0b001 0b0000 Value MCR p15, 0, Rd, c10, c0, 1

Figure 7. Format of the Lock-Down Registers

31 26 25 20 19 16

Base Value Current Victim UNP/SBZ

15 1 0

UNP/SBZ P

Loading of the TLB is managed by a victim counter, which counts from the
programmed base value up to 63. Therefore, some pages or sections can be
locked inside the TLB if loaded between the entry 0 and the entry pointed to
by the base value register.

Flush operations invalidate both locked and non-locked entries. An entry can
also be maintained in the TLB during a global flush if the preserved bit was set
during the loading of this entry in the TLB. A flush entry operation invalidates
a TLB entry regardless of its state (preserved/unpreserved).

The flush operation does not modify the base value register but reinitializes the
victim counter to the base value.

The following code sequence locks a page/section in entry 3:

{flush page/section from TLB}

MCR p15, 0, Rd, c10, c0, 1

Rd content indicates base value = 4, current victim = 3

MRC p15, 0, Rd, c7, c13, 1

Prefetch I-line with VA in Rd generates a miss TLB that loads entry 3 (victim
counter is automatically updated to 4).

Coprocessor 15

35MPU SubsystemsSPRU671

6.2.5 Context Switch (or PID: Process Identifier) Register

The PID register is used in Windows CE mode only. The register is used in
conjunction with the fast-context switch hardware support and is only used
when the Windows CE mode bit is enabled.

6.2.6 TI Operations

Register 15 controls specific TI features. Opcode_2 and CRm select the
different available registers or operations.

The wait-for-interrupt is write-only. The cache size is hard-wired and read-only.
The others are read/write registers.

Table 13. TI Operations

Function Opcode_2 CRm Rd Instruction

Set TI925T configuration 0b000 0b0001 Value MCR p15, 0, Rd, c15, c1, 0

Read TI925T configuration 0b000 0b0001 Value MRC p15, 0, Rd, c15, c1, 0

Read I_max 0b000 0b0010 Value MRC p15, 0, Rd, c15, c2, 0

Set I_max 0b000 0b0010 Value MCR p15, 0, Rd, c15, c2, 0

Read I_min 0b000 0b0011 Value MRC p15, 0, Rd, c15, c3, 0

Set I_min 0b000 0b0011 Value MCR p15, 0, Rd, c15, c3, 0

Read thread-ID 0b000 0b0100 Value MRC p15, 0, Rd, c15, c4, 0

Set thread-ID 0b000 0b0100 Value MCR p15, 0, Rd, c15, c4, 0

TI925T_status 0b000 0b1000 Value MRC p15, 0, Rd, c15, c8, 0

Wait-for-interrupt 0b010 0b1000 Ignored MCR p15, 0, Rd , c15, c8,2

Note: Required for backward code compatibility. Developers must use the wait-for-interrupt described in register 7.

All control bits except L (lock enable) and O (OS type) are set to zero upon
reset.

Table 14. TI925T Configuration Register

Bits Field Value Description

7 S Instruction cache streaming disable

0 I-cache is set in streaming mode. This is the default state after reset.

1 I-cache is set in nonstreaming mode.

Coprocessor 15

MPU Subsystems36 SPRU671

Table 14. TI925T Configuration Register (Continued)

Bits DescriptionValueField

6 R 0 Must be written to as 0.

5 O OS configuration. This bit takes the value of the OS_TYPE input signal
upon reset. It is dependent on the hardware application and may be
changed by software. This bit controls the value of the ID register and the
enabling of the PID register. The MPU915T_lock input signal forces TI925T
into MPU915T mode whatever os_type is.

0 TI925T (Windows CE mode)

1 MPU915T (MPU915T mode)

4−3 W SBZ

2 C D-cache clean and flush entry mode (See Section 6.2.2, Register 7: Cache
Operations)

0 The value held in Rd determines the entry of D-cache to clean and the clean
operation is done in both sets at a time. This is the default state after reset.

1 D[31] selects the set targeted by the clean operation.

1 T Transparent mode

0 Line loads follow line copy-backs adding some additional latency. This is
the default state after reset.

1 When TI925T is connected to a 16-bit external memory, line loads can hide
line copy-backs. There is no extra latency. If the external memory is 32 bits
wide, setting this bit to 1 generates an error during copy-back.

0 L Lock enable

0 Lock signal stays low during the SWAP instruction (atomic read-write
sequence). If marked as buffered, data is sent to the write buffer and
reaches the system bus after a slight delay.

1 The write phase of the SWAP instruction is handled as unbuffered even if
it is specified as NCB (non-cacheable and buffered). The S_LOCK signal
is active during the SWAP and may be used in a multiprocessor
environment. The S_LOCK signal stays low during SWAP instruction
accessing regions defined as write-through or copy-back. The L bit is set
to one upon reset.

Coprocessor 15

37MPU SubsystemsSPRU671

Figure 8. Format of the I_min and I_max Registers

31 Y Z 0

UNP/SBZ l_min UNP/SBZ

31 Y Z 0

UNP/SBZ l_max UNP/SBZ

I_max indicates the maximum index of the data cache containing a dirty line.

I_min indicates the minimum index of the data cache containing a dirty line.

Upon reset, D-cache flush or end of the full D-cache clean, the value of I_max
is cleared and the value of all the I_min bits is set to 1.

The TI debugger uses this register to support multithread debug capability.

Figure 9. Format of the Thread-ID Register

31 16 15 16

UNP/SBZ Thread ID

Table 15. TI925T_status Register

Bits Field Description

31 dcache_dirty When at 1, indicates the data cache may contain lines marked as dirty.

4 S_abort When at 1, indicates that external abort occurred. This bit is set to zero
upon reset and when read by TI925T.

3 dtlb_mode When at 1, indicates that DTLB counter is in random mode.

Default is set to sequential mode. This bit is set to zero upon reset.

2 Itlb_mode When at 1, indicates that ITLB counter is in random mode.

Default is set to sequential mode. This bit is set to zero upon reset.

MPU Memory Management Unit

MPU Subsystems38 SPRU671

Table 15. TI925T_status Register (Continued)

Bits DescriptionField

1 wb_full When at 1, indicates that write buffer is full. This bit is set to zero upon
reset.

0 buffered_write_aborted Set to one by the hardware when the system bus controller receives an
s_abort following external write from the WB. This is simply an indication
for the debug. This bit is set to zero upon reset and when read by TI925T.

7 MPU Memory Management Unit

The MPU MMU performs virtual-to-physical address translations and access
permission checks for access to the system memory, and it provides the
flexibility and security required for the OS to manage physical memory space
shared by the DSP subsystem and the MPU subsystem. The MPU MMU
provides no protection from DSP shared memory accesses.

The MMU hardware required to perform these functions consists of:

� A 64-entry translation look-aside buffer for instructions (I_TLB)
� A 64-entry translation look-aside buffer for data (D_TLB)
� Access control logic
� Translation table walking logic

The MMU supports memory accesses based on sections or pages:

� Sections represent memory blocks of 1M byte.
� Three different page sizes are supported:

� Large pages consist of 64K byte blocks of memory.
� Small pages consist of 4K byte blocks of memory.
� Tiny pages consist of 1K byte blocks of memory.

Sections and large pages are supported to allow mapping of large regions of
memory while using only a single entry in the TLB.

7.1 Translation Look-Aside Buffer

The TLB contains entries for virtual-to-physical address translation and
access permission checking. If the TLB contains a translated entry for the
virtual address, the access control logic determines whether access is
permitted. If permitted, the MMU generates the appropriate physical address
corresponding to the virtual address. If access is not permitted, the MMU
sends an abort signal to the TI925T.

MPU Memory Management Unit

39MPU SubsystemsSPRU671

In the event of a TLB miss (the TLB does not contain an entry corresponding
to the virtual address requested), the translation table walking hardware
retrieves the translation and access permission information from the
translation table in physical memory. Once retrieved, the page or section
descriptor is stored in the TLB at a random location.

Note:

Because load and store multiple instructions can cross a page boundary, the
permission access is checked for each sequential address.

Unpredictable behavior occurs if two TLB entries correspond to overlapping
areas of memory in the virtual space. This can occur if the TLB is not flushed
after the memory is remapped with different-sized pages (leaving an old
mapping with different sizes in the TLB and using a new mapping that is loaded
into a different TLB location).

7.2 Translation Table

The translation table held in main memory has two levels:

� The first-level table can hold both section translation entries and pointers
to second-level tables (either fine or coarse tables).

� The second-level tables can hold large, small, and tiny page translations
entries.

7.3 Domains and Access Permissions

The MMU also supports domains. Domains are areas of memory that can be
defined to have individual access rights. The CP15 domain access control
register can specify access rights for up to 16 separate domains. This register
is shared by the instruction access permission logic and data access
permission logic.

When the MMU is disabled, there is no address translation and no memory
access permission checks are performed.

Small pages are further divided into 1K byte subpages, and large pages are
further divided into 16K byte subpages with separate access permission
rights.

Tiny pages and sections are not divided into sub-pages (single access
permission rights).

MPU Memory Management Unit

MPU Subsystems40 SPRU671

7.4 MMU Program-Accessible Registers

The system control coprocessor (CP15) registers listed in Table 16, in
conjunction with the translation tables stored in memory, determine the
operation of the MMU or hold the MMU state for access by the processor.

Table 16. CP15 Registers or Functions Used by the MMU

Register Number Bits

Control register 1 M, A, S, R

Translation table base 2 31..14

Domain access control 3 31..0

Fault status 5 (D) 8..0

Fault address 6 (D) 31..0

TLB operations 8 8 31..0

TLB lock operation 10 (I &D) 31.. 20, 0

All of these registers (except register 8) hold a state and can be read from and
written to. The MMU also updates registers 5 and 6 upon a data abort to record
the cause and address of the abort (see Section 6, Coprocessor 15 for more
details on the CP15).

7.5 Address Translation

Translation information, which consists of both the address translation data
and the access permission data, resides in a translation table located in
physical memory. The MMU provides the logic needed to traverse this
translation table, obtain the translated address, and check the access
permission.

There are four routes by which the address translation (hence access
permission) takes place. The route taken depends on whether the address in
question has been marked as a section-mapped access or a page-mapped
access. There are three sizes of page-mapped access (large, small, and tiny
pages). However, the translation process always starts out in the same way,
as described below, with a level-1 fetch. A section-mapped access only
requires a level-1 fetch, but a page-mapped access also requires a level-2
fetch.

MPU Memory Management Unit

41MPU SubsystemsSPRU671

7.6 Translation Process

The MMU translates virtual addresses generated by the CPU into physical
addresses to access the external memory and checks the access permission
using a translation look-aside buffer (TLB) (see Figure 10).

The MMU table walking hardware is used to add entries to the TLB.

Figure 10. Address Translation Process

Virtual address

Page
domain

fault

No access (D0)
Reserved (10)

Section
domain

fault

Alignment
faultMisaligned

Page
translation

fault

Invalid
Section

translation
fault

Section

Get level-1 descriptor

Page

Check address alignment

Invalid

Manager (0.1)

Client (0.1)

Check domain status

Check access
permissionsViolation

Section
permission

fault

Physical address

No access (D0)
Reserved (10)

Section Page

Client (0.1)

Violation
Subpage

permission
fault

Check access
permissions

Get page
table entry

MPU Memory Management Unit

MPU Subsystems42 SPRU671

7.6.1 Translation Table Base

The translation process is initiated when the on-chip TLB does not contain an
entry corresponding to the requested virtual address (that is, when a TLB-miss
occurs). The CP15 translation table base (TTB) register points to the base of
a table in physical memory, which contains section and page table descriptors.
The 14 LSBs of the TTB register are always set to zero, so the table must start
on a 16K-byte boundary.

Figure 11. Translation Table Base Register

31 16

Translation Table Base (TTB)

15 14 13 0

Translation
Table Base

Bits (0−13) set to zero

The translation table has up to 4096, 32-bit entries, each describing 1M byte
of virtual memory. This allows the addressing of up to 4G bytes of virtual
memory.

7.6.2 Level-1 Fetch

Bits 31−14 of the TTB register are concatenated with bits 31−20 of the virtual
address to produce a 30-bit address (see Figure 12) by accessing the
translation table level-1 descriptors (see Section 7.6.3). This address selects
a four-byte translation table entry, which is a level-1 descriptor for either a
section or a page table.

MPU Memory Management Unit

43MPU SubsystemsSPRU671

Figure 12. Accessing the Translation Table Level-1 Descriptors

012

0 0

31 14 13

Table indexTranslation base

1314 031

18

Translation base

Translation table base (TTB)

12

31 020 19

Table index Section index

Virtual address

031
First-level descriptor

4-byte translation table entry

7.6.3 Level-1 Descriptor

The level-1 descriptor returned is either a coarse or fine page table descriptor
or a section descriptor. Its format varies accordingly, as shown in Figure 13.

Figure 13. Level-1 Descriptors

Fault

Coarse
page

Section

Fine
page

Domain

AP

1

C B

0

31 2019 12 11 10 9 8 5 4 3 2 1

Domain

Domain

1

1

0

0

0

1

1 0

1 1

Coarse page table base address

Section base address

Fine page table base address

Note: Bits in gray areas are ignored. They must be written to as 0. The two least significant bits indicate the descriptor type and
validity and are interpreted as shown below.

MPU Memory Management Unit

MPU Subsystems44 SPRU671

Table 17. Level-1 Fine Page Table Descriptor

Bit Name Function

31−12 FINE_PG_BASE Base address used to access the fine page table entry. The fine page
table index selecting an entry is derived from the virtual address as
illustrated in Figure 16, Tiny Page Translation.

11−9 RESERVED Reserved. Must be written as 0.

8−5 DOMAIN Specify which one of the sixteen domains (held in the domain access
control register) contains the primary access controls.

4 RESERVED Reserved. Must be written to as 1 for backward compatibility.

3−0 RESERVED Reserved. Must always be written as 0.

1−0 RESERVED Reserved. Must always be written as 1.

If a page table descriptor is returned from the level-1 fetch (Bit 0 = 1), a level
2 fetch is initiated.

Table 18. Interpreting Level-1 Descriptor Bits 1−0

Value Meaning Notes

00 Invalid Generates a section translation fault

01 Coarse Indicates a coarse page descriptor

10 Section Indicates a section descriptor

11 Fine Indicates a fine page descriptor

MPU Memory Management Unit

45MPU SubsystemsSPRU671

Table 19. Level-1 Coarse Page Table Descriptor

Bits Field Decription

31−10 COARSE_PG_BASE Base address used to access the coarse page table entry. The coarse page
table index selecting an entry is derived from the virtual address. If a page
table descriptor is returned from the level 1 fetch (Bit 0 = 1), a level 2 fetch
is initiated.

9 RESERVED Reserved. Must always be written to as 0.

8−5 DOMAIN Specify which one of the 16 domains (held in the domain access control
register) contains the primary access controls.

4 RESERVED Reserved. Must be written to as 1 for backward compatibility.

3−2 RESERVED Reserved. Must be written as 0.

1−0 RESERVED Reserved. Must be written as 1.

Table 20. Level-1 Section Descriptor

Bits Field Decription

31−20 SECTION_BASE The 12 MSBs of the address of the section in physical memory (section base
address).

19−12 Reserved Must always be written to as 0.

11−10 AP Specify the access permissions for this section (see Table 24).

9 Reserved Must always be written to as 0.

8−5 DOMAIN Specify which one of the 16 domains (held in the domain access control
register) contains the primary access controls.

4 Reserved Must be written to as 1 for backward compatibility.

3 C Cacheable (C_MMU): indicates that data or instructions at this address are
placed in the cache if the cache is enabled.

2 B Bufferable (B_MMU): indicates that data writes at this address are buffered
if the write buffer is enabled.

7.6.4 Translating Section References

Figure 14 illustrates the complete section translation sequence. The access
permissions contained in the level-1 descriptor must be checked before the
physical address is put on the address bus.

MPU Memory Management Unit

MPU Subsystems46 SPRU671

Figure 14. Section Translation

31 20 19

18 12

14 13

2 1

00

0
Virtual address

Table index Section index

Translation base

Translation table base

First-level descriptor

Table indexTranslation base

31

31

31

0

0

0

14 13

Physical address

Section index

AP C BDomain 1 1 0Section base address

Section base address

12

31 0

9 8 5 4 3 2 120 19 12 1110

12

20 19

7.6.5 Level-2 Descriptor

The level-1 fetch, when returning a coarse or fine page table descriptor,
provides the base address of the page table to be used. The page table is then
accessed, and a level-2 descriptor is returned. This descriptor defines a tiny,
small, or large page access. Figure 15 shows the format of level-2 descriptors.

MPU Memory Management Unit

47MPU SubsystemsSPRU671

Figure 15. Page Table Entry (Level-2 Descriptor)

Fault

Large page

Small page

Tiny page

C B

0

31 20 19 12 11 10 9 8 5 4 3 2 1

0

0

0

1

1 0

1 1

Large page base address

Small page base address

Tiny page base address

16 15 67

B

B

C

C

ap0

ap1

ap2ap3

ap3 ap2

ap1

ap0

ap

Coarse page tables have 256 entries, and each entry describes 4K bytes.
These entries provide a base address for either small or large pages. Large
page descriptors must be repeated in 16 consecutive entries.

Fine page tables have 1024 entries, and each entry describes 1K byte. These
entries provide a base address for tiny, small, or large pages. Small page
descriptors must be repeated in four consecutive entries. Large page
descriptors must be repeated in 64 consecutive entries.

The two least significant bits indicate the page size and validity and are
interpreted as follows.

Table 21. Level-2 Section Descriptor

Bits Field Decription

31−10 PG_BASE Bits 31−10 (tiny pages), bits 31−12 (small pages), or bits 31−16 (large pages) are
used to form the corresponding bits of the physical address—the physical page
number. The page index is derived from the virtual address.

11−4 AP Access permissions (ap3-ap0) must be specified for the four subpages within large
and small pages. Tiny pages do not have subpages and bits 5-4 specify the access
permission (see Table 24). For large pages, bits 15-12 SBZ.

3 C Cacheable (C_MMU): indicates that data or instructions at this address are placed
in the cache if the cache is enabled.

2 B Indicates that data writes at this address are buffered if the write buffer is enabled.

MPU Memory Management Unit

MPU Subsystems48 SPRU671

Table 22. Interpreting Page Table Entry Bits 1−0

Value Meaning Notes

00 Invalid Generates a page translation fault

01 Large page Indicates a 64K-byte page

10 Small page Indicates a 4K-byte page

11 Tiny page Indicates a 1K-byte page

7.6.6 Translating Tiny Pages References

Figure 16 illustrates the complete translation sequence for a 1K-byte tiny
page. Page translation involves one additional step beyond that of a section
translation; the level-1 descriptor is the page table descriptor and is used to
point to the level-2 descriptor or page table entry. For pages, the access
permissions are contained in the level-2 descriptor and must be checked
before the physical address is put on the s_add bus.

MPU Memory Management Unit

49MPU SubsystemsSPRU671

Figure 16. Tiny Page Translation

31 20 19

18

12

14 13

2 1

00

0
Virtual address

Table index L2 table index

Translation base

Translation table index

First-level descriptor

Table indexTranslation base

31

31

31

0

0

0

14 13

L2 table index

C B

Domain 1

1 1

Fine page table base address

Page table base address

31

0

9 8 5 4 2 112

12 11

Page base address

31 0

Page indexPage base address
31 0

10
10

10 9

Page index

11

2 1

0

12 1110 123456789

ap

Second-level descriptor

Physical address
10 9

0

7.6.7 Translating Small Page References

Figure 17 illustrates the complete translation sequence for a 4K-byte small
page. If a small page descriptor is included in a fine page table, the upper two
bits of the index of the page overlap the lower two bits of the index of the fine
page table. In other words, four consecutive entries must be used for a small
page in a fine page table.

MPU Memory Management Unit

MPU Subsystems50 SPRU671

Figure 17. Small Page Translation

31 20 19

18

12

14 13

2 1

00

0
Virtual address

Table index L2 table index

Translation base

Translation table index

First-level descriptor

Table indexTranslation base

31

31

31

0

0

0

14 13

L2 table index

C B

Domain 1

1 0

Page table base address

Page table base address

31

0

9 8 5 4 2 110

10 9

Page base address

31 0

Page indexPage base address
31 0

8
12

12 11

Page index

10

2 1

0

12 1110 123456789

ap0

Second-level descriptor

Physical address
12 11

0

ap1ap2ap3

7.6.8 Translating Large Page References

Figure 18 illustrates the complete translation sequence for a 64K-byte large
page. As the upper four bits of the page index and the lower four bits of the
coarse page table index overlap, each coarse page table entry for a large page
descriptor must be duplicated 16 times (in consecutive memory locations). If

MPU Memory Management Unit

51MPU SubsystemsSPRU671

the large page is included in a fine page table, the large page descriptor must
be duplicated 64 times.

7.7 MMU Faults and MPU Aborts

The MMU generates the following types of faults:

� Alignment fault (on data access only)
� Translation fault
� Domain fault
� Permission fault

In addition, an external abort can be raised on certain types of external data
accesses.

When the MMU is off, the only fault generated is the alignment fault.

The access control mechanism of the MMU detects the conditions that
produce these faults. If a fault is detected as the result of a memory access,
the MMU aborts the access and signals the fault condition to the MPU. The
MMU is also capable of retaining the type and address information of the abort.
The MPU recognizes two types of aborts: data and pre-fetch aborts. The MMU
has no FAR or FSR registers.

The MMU detects access violations before starting the external memory
access. External aborts do not necessarily inhibit the external access.

MPU instructions are prefetched, so a prefetch abort simply flags the
instruction as it enters the instruction pipeline. An abort does not occur,
because a previously fetched instruction could render the rest of the pipe
information moot. For example, if a branch instruction executes first or an
interrupt occurs, the instruction that causes the abort never executes. This
instruction actually causes the abort to take place only if it is executed. No
abort takes place if the instruction is not used (when it is branched around).

MPU Memory Management Unit

MPU Subsystems52 SPRU671

Figure 18. Large Page Translation

31 20 19

18

12

14 13

2 1

00

0
Virtual address

Table index L2 table index

Translation base

Translation table base

First-level descriptor

Table indexTranslation base

31

31

31

0

0

0

14 13

L2 table index

C B

Domain 1

10

Page table base address

Page table base address

31

0

9 8 5 4 2 110

10 9

Page base address

31 0

Page indexPage base address
31 0

8
16

12 11

Page index

10

2 1

0

12 1110 123456789

ap0

Second-level descriptor

Physical address
16 15

0

ap1ap2ap3

16 15

16 15

7.8 Fault Address and Fault Status Registers (FAR and FSR)

If an illegal data access (data abort) occurs, the MMU places an encoded 4-bit
value FS[3−0] and the 4-bit encoded domain number in the fault status register
(FSR). In addition, the virtual address (VA) associated with the data abort is
stored into the fault address register (FAR). If an access violation results from
multiple causes, the faults are encoded according to the priorities given in

MPU Memory Management Unit

53MPU SubsystemsSPRU671

Table 23. Faults that occur during an instruction fetch are not stored in FSR
and FAR.

The following sections describe the various access permissions and controls
supported by the MMU and detail how they are interpreted to generate faults.

Table 23. Priority Encoding of the Fault Status Register

Source Priority Domain [3-0] FAR

Highest priority

Alignment† 0b0001 Invalid‡ VA of access causing abort§

External abort on transaction First level 0b1100 Invalid VA of access causing abort

Second
level

0b1110 Valid

Transaction Section 0b0101 Invalid VA of access causing abort

Page 0b0111 Valid

Domain Section 0b1001 Valid VA of access causing abort

Page 0b1011 Valid

Permission Section 0b1101 Valid VA of access causing abort

Page 0b1111 Valid

External abort on line fetch Section 0b0100 Valid VA of start of cache line being
loaded

Page 0b0110 Valid

External abort on NCNB access Section 0b1000 Valid VA of access causing abort

Page 0b1010 Valid

Lowest priority

† Alignment faults write 0b0001 into FS[3-0].
‡ Invalid values in domain[3-0] occur because the fault is raised before a valid domain field has been selected.
§ Fixing the primary abort and restarting the instruction can regenerate any abort masked by the priority encoding.

7.9 Domain Access Control

MMU accesses are primarily controlled via domains. There are 16 domains,
and each domain is defined by a 2-bit field. Two kinds of users are supported:
clients and managers. Clients use a domain; managers control the behavior
of the domain. The domains are defined in the domain access control register.
The following figure illustrates how the 32 bits of the register are allocated to
define the sixteen 2-bit domains.

MPU Memory Management Unit

MPU Subsystems54 SPRU671

Figure 19. Domain Access Control Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Table 24 defines how the bits within each domain are interpreted to specify the
access permissions.

Table 24. Interpreting Access Bits in Domain Access Control Register

Value Access Type Description

0b00 No access Any access generates a domain fault.

0b01 Client Access permission is checked against the permission
given by the page descriptor.

0b10 Reserved Behaves like “no access”

0b11 Manager The access permission is not checked; permission
faults are not generated.

7.10 Permission Access

Both instructions and data need access permission checks, but their
respective access violations are handled differently. A data access error
generates a DABORT and stores the status, domain, and address in FSR and
FAR. An instruction fetch generates an IABORT only; it does not update FSR
and FAR as it is possible the aborted instruction is not executed (if it is
branched around). The IABORT flags the instruction as it enters the TI925T.

When the MMU is turned off, the physical address is output directly and no
memory access permission checks are performed.

Table 25. Interpreting Access Permission

Domain AP S R Supervisor User Description

x0 xx x x No access No access Generates a domain fault

01 00 0 0 No access No access Generates a permission fault

MPU Memory Management Unit

55MPU SubsystemsSPRU671

Table 25. Interpreting Access Permission (Continued)

Domain DescriptionUserSupervisorRSAP

01 00 1 0 Read only No access Supervisor read only permitted

01 00 0 1 Read only Read only Any write generates a permission fault.

01 00 1 1 Reserved Reserved Generates a permission fault

01 01 x x Read/write No access Access allowed only in supervisor mode.†

01 10 x x Read/write Read only User writes cause a permission fault.†

01 11 x x Read/write Read/write All accesses are allowed.†

01 xx 1 1 Reserved Reserved Generates a permission fault

11 xx x x Full access Full access No permission fault can be generated.

† In the client mode, the combination S/R = 11 is reserved and generates a permission fault. Therefore, on these three lines, S/R
can only take the values 00, 01, or 10.

7.11 Fault Checking Sequence

The sequence by which the MMU checks for access faults is slightly different
for sections and pages. Figure 20 illustrates the sequence for both. The
following sections describe the conditions that generate each of the faults.

MPU Memory Management Unit

MPU Subsystems56 SPRU671

Figure 20. Sequence for Checking Faults

Virtual address

Page
domain

fault

No access (D0)
Reserved (10)

Section
domain

fault

Alignment
faultMisaligned

Page
translation

fault

Invalid
Section

translation
fault

Section

Get level-1 descriptor

Page

Check address alignment

Invalid

Manager (0.1)

Client (0.1)

Check domain status

Check access
permissionsViolation

Section
permission

fault

Physical address

No access (D0)
Reserved (10)

Section Page

Client (0.1)

Violation
Subpage

permission
fault

Check access
permissions

Get page
table entry

7.11.1 Alignment Fault

If an alignment fault is enabled (bit 1 in CP15 control register 1), the MMU
generates an alignment fault upon 16-bit and 32-bit data accesses that are
improperly aligned (not on an address multiple of 2 and 4, respectively). The
TI925T checks the alignment even if the MMU is disabled.

Instruction fetches do not generate alignment faults; they always access
memory on 32-bit word boundaries.

MPU Memory Management Unit

57MPU SubsystemsSPRU671

If the access generates an alignment fault, the access sequence aborts
without checking access rights.

If a nonaligned read access is executed and the alignment fault is disabled,
data is accessed at a word address and rotated inside the core as shown
below. If a nonaligned half-word or word write is executed while the alignment
fault is disabled, the write is done on a half-word or word address boundary.

Figure 21 is an example of read-word access on byte 11.

Figure 21. Nonaligned Read-Word Access

11 10 01 00

aa bb cc dd

bb cc dd aa

Word address in memory

Read Access on Address Byte 11

Word is rotated inside the MPU core

7.11.2 Translation Fault

There are two types of translation fault: section and page.

� A section translation fault is generated if the level 1 descriptor is marked
as invalid. This happens if bits [1−0] of the descriptor are both 0.

� A page translation fault is generated if the page table entry is marked as
invalid. This happens if bits [1−0] of the page table entry are both 0.

7.11.3 Domain Fault

There are two types of domain faults: section and page. In both cases, the level
1 descriptor holds the 4-bit domain field that selects one of the sixteen 2-bit
domains in the domain access control register. The two bits of the specified
domain are then checked for access permissions, as detailed in Table 2.15.

� In the case of a section, the domain is checked once the level 1 descriptor
is returned.

� In the case of a page, the domain is checked once the page table entry is
returned.

A section or page domain fault occurs if the permission access is either no
access (00) or reserved (10).

MPU Memory Management Unit

MPU Subsystems58 SPRU671

7.11.4 Permission Fault

There are two types of permission faults: section and subpage. Permission
fault is checked at the same time as the domain fault. If the 2-bit domain field
returns client (01), then the permission access check is invoked as follows:

� Section: If the level-1 descriptor defines a section-mapped access, its AP
bits define whether or not the the access is allowed (see Table 24). Their
interpretation is dependent upon the setting of the S bit (CP15 control
register bit 8). If the access is not allowed, a section permission fault is
generated.

� Subpage: If the level-1 descriptor defines a page-mapped access, the
level-2 descriptor specifies four access permission fields (ap3..ap0), each
corresponding to one quarter of the page. ap0 corresponds to the subpage
located at the lowest addresses. The selected AP bits are then interpreted
in the same way as for a section and may generate a subpage permission
fault.

7.12 External Aborts

In addition to the MMU-generated aborts, the TI925T has an external s_abort
port, which can be used to flag errors on external memory accesses. However,
not all accesses can be aborted this way, so this signal must be used with great
care. This section describes the restrictions.

In the case of an interlocked read-write (SWAP instruction) in which the read
aborts, the write does not happen. The accesses listed below can be aborted
and restarted safely

� Reads
� Unbuffered writes
� Level-1 descriptor fetch
� Level-2 descriptor fetch
� Interlocked read-write (SWAP)
� Cacheable reads (line fetches)

A cache line fetch can be safely aborted on any word in the transfer. If an abort
occurs during the line fetch, the cache line is invalidated. In addition, if the abort
happens upon or before the instruction the TI925T requested, the instruction
is aborted. If the abort happens after, the cache line is simply marked as
invalid.

DSP Memory Management Unit

59MPU SubsystemsSPRU671

7.13 Buffered Writes

Buffered writes cannot be aborted externally. Therefore, the system must be
configured in such a way that it does not perform buffered writes to areas of
memory that can generate an external abort.

There are three instances of MMU: the DSP MMU, the MPU instruction cache
MMU, and the MPU data cache MMU. The MPU MMU is that of the TI925T.
Because there are multiple MMUs, it is the responsibility of the OS (system
software) to ensure data coherence.

8 DSP Memory Management Unit

The MMU is used when the DSP software accesses external memory. This
memory can be mapped on any OMAP5910 address space, on the internal
SRAM, or on an external SDRAM. The DSP MMU translates addresses
coming from the DSP (virtual addresses) to addresses mapped by the Traffic
Controller. The MMU is used when the DSP accesses external memory.

The DSP MMU can map 16M bytes of DSP addresses (virtual addresses) to
any area in the entire 4G bytes of system memory (physical address). The
physical address space includes internal and external memory acessed
through the Traffic Controller.

If memory protection or memory access violation occurs, the DSP MMU
generates an IRQ_28 interrupt to the MPU second-level interrupt handler. The
cause of the violation can be found in the MMU fault address and fault status
registers. Both MPU and DSP can configure the DSP MMU using the TI
Peripheral Bus registers. Typically, the MPU initializes the DSP MMU at boot
time. The DSP MMU registers are listed in Table 26.

Table 26. DSP Memory Management Unit Registers

Name Description R/W Size Address Reset Value

PREFETCH_REG Prefetch register R/W 16 bits FFFE:D200 0x0000

WALKING_ST_REG Prefetch status register R 16 bits FFFE:D204 0x0000

CNTL_REG Control register R/W 16 bits FFFE:D208 0x0000

FAULT_AD_H_REG Fault address register MSB R 16 bits FFFE:D20C 0x0000

FAULT_AD_L_REG Fault address register LSB R 16 bits FFFE:D210 0x0000

F_ST_REG Fault status register R 16 bits FFFE:D214 0x0000

IT_ACK_REG Interrupt acknowledge register W 16 bits FFFE:D218 0x0000

DSP Memory Management Unit

MPU Subsystems60 SPRU671

Table 26. DSP Memory Management Unit Registers (Continued)

Name Reset ValueAddressSizeR/WDescription

TTB_H_REG TTB register MSB R/W 16 bits FFFE:D21C 0x0000

TTB_L_REG TTB register LSB R/W 16 bits FFFE:D220 0x0000

LOCK_REG Lock counter R/W 16 bits FFFE:D224 0x0000

LD_TLB_REG Load entry in TLB R/W 16 bits FFFE:D228 0x0000

CAM_H_REG CAM entry register MSB R/W 16 bits FFFE:D22C 0x0000

CAM_L_REG CAM entry register LSB R/W 16 bits FFFE:D230 0x0000

RAM_H_REG RAM entry register MSB R/W 16 bits FFFE:D234 0x0000

RAM_L_REG RAM entry register LSB R/W 16 bits FFFE:D238 0x0000

GFLUSH_REG Global flush register R/W 16 bits FFFE:D23C 0x0000

FLUSH_ENTRY_REG Individual flush register R/W 16 bits FFFE:D240 0x0000

READ_CAM_H_REG Read CAM MSB R/W 16 bits FFFE:D244 0x0000

READ_CAM_L_REG Read CAM LSB R/W 16 bits FFFE:D248 0x0000

READ_RAM_H_REG Read RAM MSB R/W 16 bits FFFE:D24C 0x0000

READ_RAM_L_REG Read RAM LSB R/W 16 bits FFFE:D250 0x0000

Table 27. Prefetch Register (PREFETCH_REG)) − Offset Address (hex): 00

Bits Description Size Access

Value at
Hardware

Reset

15 Reserved 1

14 The data to prefetch is data when 1, program when 0. 1 R/W 0

13−0 MSB of virtual address tag of the TLB entry to be prefetched 14 R/W 0

DSP Memory Management Unit

61MPU SubsystemsSPRU671

Table 28. Prefetch Status Register (WALKING_ST_REG) − Offset Address (hex): 04

Bits Description Size Access

Value at
Hardware

Reset

15−2 Reserved 14

1 When 1, table walking is running. 1 R 0

0 Writing in the prefetch data register sets this bit; the
acknowledge of the prefetch resets the bit.

1 R 0

Table 29. Control Register (CNTL_REG) − Offset Address (hex): 08

Bits Description Size Access

Value at
Hardware

Reset

15−6 Reserved 10

5 Enables the 16-bit burst management. Active high. 1 R 0

4 Reserved 1

3 Reserved 1

2 When 1, the walking table logic is enabled. When 0, the walking
table is disabled and access to the TLB and lock counter are
disabled.

1 R 0

1 Enables MMU. Active high. 1 R 0

0 Resets module. Active low. 1 R 0

Table 30. Fault Address Register MSB (FAULT_AD_H_REG) − Offset Address (hex): 0C

Bits Description Size Access

Value at
Hardware

Reset

15−9 Reserved 7

8 The access that generated a permission fault is data when 1 or
program when 0.

1 R 0

7−0 MSB of virtual address of the access that generated a permission
fault

8 R 0

DSP Memory Management Unit

MPU Subsystems62 SPRU671

Table 31. Fault Address Register LSB (FAULT_AD_L_REG) − Offset Address (hex): 10

Bits Description Size Access

Value at
Hardware

Reset

15−7 LSB of virtual address of the access that generated a permission
fault

9 R 0

6−0 Reserved 7

Table 32. Fault Status Register (F_ST_REG)) − Offset Address (hex): 14

Bits Description Size Access

Value at
Hardware

Reset

15−4 Reserved 12

3 Error occurred during a prefetch. Active high. 1 R 0

2 Permission fault. Active high. 1 R 0

1 TLB miss. Active high. 1 R 0

0 Translation fault. Active high. 1 R 0

Table 33. IT Acknowledge Register (IT_ACK_REG) − Offset Address (hex): 18

Bits Description Size Access

Value at
Hardware

Reset

15−1 Reserved 15

0 a write of 1 to this bit acknowledges the interrupt and clears the
bit sutomatically. A write of 0 has no effect.

1 W 0

Table 34. TTB Register MSB (TTB_H_REG) − Offset Address (hex): 1C

Bits Description Size Access

Value at
Hardware

Reset

15−0 MSB of TTB 16 R 0

DSP Memory Management Unit

63MPU SubsystemsSPRU671

Table 35. TTB Register LSB (TTB_L_REG) − Offset Address (hex): 20

Bits Description Size Access

Value at
Hardware

Reset

15−7 LSB of TTB 9 R 0

6−0 Reserved 7

Table 36. Lock Counter Register (LOCK_REG) − Offset Address (hex): 24

Bits Description Size Access

Value at
Hardware

Reset

15−10 Locked entries base value 6 R/W 0

9−4 Current entry pointed by the WTL 6 R/W 0

3−0 Reserved 4

Table 37. Load Entry in TLB Register (LD_TLB_REG) − Offset Address (hex): 28

Bits Description Size Access

Value at
Hardware

Reset

15−2 Reserved 14

1 Read data in TLB when 1. 1 R/W 0

0 Load data in TLB when 1. 1 R/W 0

Table 38. CAM Entry Register MSB (CAM_H_REG) − Offset Address (hex): 2C

Bits Description Size Access

Value at
Hardware

Reset

15−6 Reserved 10

5−0 Table index level-1 MSB 6 R/W 0

DSP Memory Management Unit

MPU Subsystems64 SPRU671

Table 39. CAM Entry Register LSB (CAM_L_REG) − Offset Address (hex): 30

Bits Value Description Size Access

Value at
Hardware

Reset

15−10 Table index level-1 LSB 6 R/W 0

9−4 Tiny page bits 9−0 (10 bits long)

Small page bits 9−2 (8 bits long)

Large page bits 9−6 (4 bits long)

6 R/W 0

3 Preserved bit 1 R/W 0

0 CAM entry not preserved

1 CAM entry preserved

2 Valid bit: 1 R 0

0 CAM entry not valid

1 CAM entry valid

1−0 00 Section (1 MB) 2 R/W 0

01 Large pages (64 KB)

10 Small pages (4 KB)

11 Tiny page (1 KB)

Table 40. RAM Entry Register MSB (RAM_H_REG) − Offset Address (hex): 34

Bits Description Size Access

Value at
Hardware

Reset

15−0 MSB physical address 16 R/W 0

Table 41. RAM Entry Register LSB (RAM_L_REG) − Offset Address (hex): 38

Bits Description Size Access

Value at
Hardware

Reset

15−10 LSB physical address 6 R/W 0

9−8 Access permission bits 2 R/W 0

7−0 Reserved 8

DSP Memory Management Unit

65MPU SubsystemsSPRU671

Table 42. Global Flush Register (GFLUSH_REG) − Offset Address (hex): 3C

Bits Description Size Access

Value at
Hardware

Reset

15−1 Reserved 15

0 Toggle bit. Flush all nonprotected TLB entries when 1 is written.
Always 0 when read. Automatically reset.

1 R/W 0

Table 43. Individual Flush Register (FLUSH_ENTRY_REG) − Offset Address (hex):40

Bits Description Size Access

Value at
Hardware

Reset

15−1 Reserved 15

0 Toggle bit. Active high. Always 0 when read. 1 R/W 0

Table 44. CAM Entry Register MSB (READ_CAM_H_REG) − Offset Address (hex): 44

Bits Description Size Access

Value at
Hardware

Reset

15−10 Reserved 6

9−0 Table index level-1 MSB 10 R/W 0

Table 45. CAM Entry Register LSB (CAM_CAM_L_REG) − Offset Address (hex): 48

Bits Value Description Size Access

Value at
Hardware

Reset

15−10 Table index level-1 LSB 6 R/W 0

9−4 Tiny page bits 9−0 (10 bits long)

Small page bits 9−2 (8 bits long)

Large page bits 9−6 (4 bits long)

6 R/W 0

3 Preserved bit 1 R/W 0

0 CAM entry not preserved

DSP Memory Management Unit

MPU Subsystems66 SPRU671

Table 45. CAM Entry Register LSB (CAM_CAM_L_REG) − Offset Address (hex): 48
(Continued)

Bits

Value at
Hardware

ResetAccessSizeDescriptionValue

1 CAM entry preserved

2 Valid bit: 1 R 0

0 CAM entry not valid

1 CAM entry valid

1−0 00 Section (1 MB) 2 R/W 0

01 Large pages (64 KB)

10 Small pages (4 KB)

11 Tiny page (1 KB)

Table 46. RAM Entry Register MSB (READ_RAM_H_REG) − Offset Address (hex): 4C

Bits Description Size Access

Value at
Hardware

Reset

15−0 MSB physical address 16 R/W 0

Table 47. RAM Entry Register LSB (READ_RAM_L_REG) − Offset Address (hex): 50

Bits Description Size Access

Value at
Hardware

Reset

15−10 LSB physical address 6 R/W 0

9−8 Access permission bits 2 R/W 0

7−0 Reserved 8

MPU Interface

67MPU SubsystemsSPRU671

9 MPU Interface

The MPU interface (MPUI) allows the TI925T and the system DMA controller
to communicate with the DSP and its peripherals (except the private
peripherals) via the DSP MPUI port (part of the DSP); see Figure 22. Through
the MPU interface (MPUI), the MPU and the system DMA controller can
access the entire DSP memory space (16M bytes) including the 128K byte
DSP I/O space. Figure 1−22 shows the block diagram of the MPUI.

Figure 22. MPUI Simplified Block Diagram

Control and
configuration

registers

TI
peripheral

bus

To DSP MPUI
port

MPU bus
interface
MPU bus

controller
interface

System DMA

MPU bus32 32
MPUI
data
port

Arbiter
(programmable
priority scheme)

16
MPUI interface

9.1 Functional Features

The MPUI supports the following features:

� Four access modes:

� Shared-access mode (SAM) for SARAM, DARAM, memory interface
access

� Shared-access mode (SAM) for peripheral bus access

� Host-only mode (HOM) for SARAM access

� Host-only mode (HOM) for peripheral bus access

� An interrupt sent to the TI925T if a time-out occurs

� Programmable priority scheme (TI925T, and system DMA) that must be
configured during the system boot process

MPU Interface

MPU Subsystems68 SPRU671

� Packing and unpacking (16-bits to 32-bits, and vice versa)

� 32-bit single access support

� Software control endianism conversion (default is word swap for all
access, byte swap for memory access only)

� DMA access to the DSP’s entire 16 M byte memory space

� DMA access to the DSP peripheral bus shared peripherals (up to 128K
bytes)

In host-only mode (HOM), the MPUI interface does not have access to the
DARAM (0x00 0000 to 0x00 FFFF). All SARAM (0x01 0000 to 0x04 FFFF) is
accessible by the MPUI, but the type of access depends on the DSP status
(HOM or SAM) and on the MPUI size register (DSP_API_CONFIG). The
following rules apply:

� Before the MPU reset (resetting the DSP MPUI logic) is released, the
MPUI cannot access any SARAM.

� After the MPU reset is released and before the DSP reset is released, the
DSP is in HOM. The default MPUI size register value (after the
MPU_nRESET is released) is 0xFFFF, and the MPUI has exclusive
access to all SARAM.

� Shared access: a portion of the SRAM blocks can be shared by the DSP
and MPU through the MPUI. The MPUI configuration register
(DSP_MPUI_CONFIG) defines the memory blocks (SARAM 0,1,2....) to
be shared (see Table 1−56).

� After the DSP reset is released, the DSP goes automatically into SAM;
consequently, whatever the value of the MPUI size register, all SARAM is
shared between the DSP and the MPUI.

In SAM, all the DSP internal memory is accessible by the MPUI interface. If
both the DSP and the MPU controllers (TI925T and system DMA) access the
same memory at the same time, priority is given to the DSP controllers. The
access is synchronized to the internal DSP CPU clock.

HOM(Host-Only Mode) is more efficient than SAM(Single-Access Mode),
because there is no synchronization involved. However, HOM depends on the
host operating frequency, which is normally slower than the internal DSP CPU
clock. The system software can switch between HOM and SAM or vice versa,
if desired, and it is up to the software to manage the system resources.

MPU Interface

69MPU SubsystemsSPRU671

Note:MPUI Port Accesses

The MPUI port can access only memory space inside the DSP. Accessing
via the DSP MMU is prohibited. The MPU system and system DMA must ac-
cess EMIF, EMIFF, and IMIF through the traffic controller.

9.2 MPUI Registers

Table 48 lists the MPUI registers. Table 49 through Table 56 describe the
register bits.

Table 48. MPUI Registers

Register Name Description R/W Size
Address
(FFFE:x) Reset Value

CTRL_REG Control R/W 32 bits C900 0x0003
FF1F

DEBUG_ADDR Debug address—has the address from
last operation in case an abort occurs.

R 32 bits C904 0x00FF
FFFF

DEBUG_DATA Debug data —has the data from last
operation in case an abort occurs.

R 32 bits C908 0xFFFF
FFFF

DEBUG_FLAG Debug flag R 32 bits C90C 0x0000
0000

STATUS_REG MPUIF status R 32 bits C910 0x0000
1FFF

DSP_STATUS_REG Current DSP status R 32 bits C914 U

DSP_BOOT_CONFIG Boot DSP configuration R/W 32 bits C918 0x0000
0000

DSP_API_CONFIG MPUI size information R/W 32 bits C91C 0x0000
FFFF

MPU Interface

MPU Subsystems70 SPRU671

Table 49. Control Register (CTRL_REG) − Offset: x00

Bits Value Description Size Access

Value at
Hardware

Reset

22−21 Control word swap on the MPUI/DSP interface for a
32-bit access

2 R/W 00

00 Word swap for all the accesses

01 Word swap only for non-MPUIMEM accesses

10 Word swap only for MPUIMEM accesses

11 Turn off word swap for all accesses

20−18 MPUIF access priority between MPU, reserved port, and
DMA requests. The reserved port is not used in the
OMAP5910 device and can be disregarde.

Note: the lower the number, the higher the priority.

3 R/W 000

000 MPU-1, DMA-2, reserved port-3

001 MPU-1, DMA-3, reserved port-2

010 MPU-2, DMA-1, reserved port-3

011 MPU-2, DMA-3, reserved port-1

1X0 MPU-3, DMA-1, reserved port-2

1X1 MPU-3, DMA-2, reserved port-1

17−16 Control byte swap on the MPUI/DSP interface 2 R/W 11

00 Turn off byte swap for all accesses

01 Byte swap only for non-MPUIMEM accesses

10 Byte swap for all accesses

11 Byte swap only for MPUIMEM accesses

15−8 MPUI bus access time out 8 R/W 0xFF

7−4 Division factor of MPUIF_HNSTROBE. For the
OMAP5910 device, this field must be set to 2 (10b) or
greater. Settings of 00b or 01b should not be used.

4 R/W 0x1

MPU Interface

71MPU SubsystemsSPRU671

Table 49. Control Register (CTRL_REG) − Offset: x00 (Continued)

Bits

Value at
Hardware

ResetAccessSizeDescriptionValue

3 1 Enables sending IRQ_ABORT interrupt to the MPU when
an abort condition is indicated by the MPU port from the
DSP system.

1 R/W 1

0 Disables this interrupt source 1 R/W 1

2 Reserved 1 R/W 1

1 1 Enables the time-out feature. An IRQ_ABORT interrupt is
sent to the MPU if a time-out occurs.

1 R/W 1

0 Disables this interrupt source 1 R/W 1

0 Frequency mode 1 R/W 1

0 Low-frequency MPU clock

1 High-frequency MPU clock

Note: In the MPUI, there are three sources which can generate an IRQ_ABORT:

1) Abort from the DSP: This can be masked by setting CTRL_REG[3] to 0.
2) Time-out event occurred: This can be masked by setting CTRL_REG[1] to 0. But masking the time-

out interrupt can cause system to wait forever, if DSP never responds to the MPU request.
3) Burst access detected: This cannot be masked.

These interrupt sources are assigned to the IRQ_ABORT line of the level 1 MPU interrupt handler. The
DEBUG_FLAG register contains the information related to which one of these three sources caused
the interrupt.

Apart from the MPUI, other modules such as the TIPB Bridge can also generate the IRQ_ABORT inter-
rupt.

Table 50. Debug Address Register (DEBUG_ADDR) − Offset: x04

Bits Description Size Access

Value at
Hardware

Reset

31−24 Reserved 8 R 0x00

23−0 Bits of address bus from MPU/DMA interface. Saved on abort or
access mismatch.

24 R 0xFF FFFF

MPU Interface

MPU Subsystems72 SPRU671

Table 51. Debug Data Register (DEBUG_DATA) − Offset: x08

Bits Description Size Access
Value at Hard-

ware Reset

31−0 The value of S_DATA_R is saved when a read access has a
size mismatch, and S_DATA_W is saved when a write access
is aborted or has a size mismatch.

32 R 0xFFFFFFFF

Table 52. Debug Flag Register (DEBUG_FLAG) − Offset: x0C

Bits Value Description Size Access

Value at
Hardware

Reset

31−16 Reserved 16 R 0x0000

15−13 Reserved 3

12−11 Encoded access mode for MPUI 2 R 00

00 SAM_M and SAM_R

01 SAM_M and HOM_R

10 HOM_M and SAM_R

11 HOM_M and HOM_R

10−9 Chip-select. Saved on abort. These bits indicate
whether memory space or TIPB space was accessed
just before the abort was generated.

2 R 00

01 Memory access

10 Peripheral bus or MPUI control register access

8−7 Burst size saved on abort 3 R 000

6 Read not write on MPUI bus 1 R 0

5 Read not write on MPUI bus. This bit indicates whether
a read or write access was active just before the abort
was generated.

1 R 0

1 Read access

0 Write access

4 Flag set to 1 when access size saved on abort is 32
bits

1 R 0

MPU Interface

73MPU SubsystemsSPRU671

Table 52. Debug Flag Register (DEBUG_FLAG) − Offset: x0C (Continued)

Bits

Value at
Hardware

ResetAccessSizeDescriptionValue

3 Flag set to 1 when burst size saved on abort is not
equal to 000

1 R 0

2 Flag set to 1 when MPUIF access is aborted by internal
time out

1 R 0

1 Flag set to 1 when MPUI aborts access 1 R 0

0 Flag set to 1 when MPUI port on DSP subsystem
aborts the access

1 R 0

The STATUS_REG checks the status of the MPU interface during suspend
mode (for example, after hitting an emulator breakpoint). The register is for
OMAP5910 device chip designers to use for debugging.

Table 53. Status Register (STATUS_REG) − Offset: x10

Bits Value Description Size Access

Value at
Hardware

Reset

12−11 Current access in progress is: 2 R 11

00 MPU access

01 DMA access

10 Reserved port access, should not occur

11 No access

10−3 Current value of time-out counter 8 R 0xFF

2 Enable chip-select bit indicates when MPU wait states
are being inserted, which forces chip-selects to
inactive:

1 R 1

0 CSs are forced to inactive state (high).

1 CSs are enabled and can be asserted.

1 0 MPUIF is accessing MPUI. 1 R 1

1 No access in progress

MPU Interface

MPU Subsystems74 SPRU671

Table 53. Status Register (STATUS_REG) − Offset: x10 (Continued)

Bits

Value at
Hardware

ResetAccessSizeDescriptionValue

0 Current access mode when ACCESS_DONE = 0 or
last access mode when ACCESS_DONE = 1

1 R 1

0 SAM

1 HOM

Table 54. DSP Status Register (DSP_STATUS_REG) − Offset: x14

Bits Value Description Size Access

Value at
Hardware

Reset

11 HOM or SAM for accessing DSP peripherals (from
DSP)

1 R 1

0 SAM

1 HOM

10 HOM or SAM for accessing MPUI peripherals (from
DSP)

1 R 1

0 SAM

1 HOM

9 Asynchronous reset controlled by emulation 1 R 1

8 Idle peripherals 1 R 1

0 Functional mode

1 Idle

Linked to bit 7 of the ISTR register (from DSP)

7 Idle peripherals 1 R 1

0 Functional mode

1 Idle

Linked to bit 6 of the ISTR register (from DSP)

MPU Interface

75MPU SubsystemsSPRU671

Table 54. DSP Status Register (DSP_STATUS_REG) − Offset: x14 (Continued)

Bits

Value at
Hardware

ResetAccessSizeDescriptionValue

6 Idle peripherals 1 R 1

0 Functional mode

1 Idle

Linked to bit 4 of the ISTR register (from DSP)

5 Idle peripherals 1 R 1

0 Functional mode

1 Idle

LInked to bit 3 of the ISTR register (from DSP)

4 Interrupt acknowledged by the DSP (from DSP) 1 R 1

3 Output of TMS320C55x CPU ST3 register (from DSP),
which is the CPUAVIS bit

1 R 1

2 XF is a signal from the C55x DSP core. On standard
DSP devices such as the TMS320C5510, XF is
connected to a pin and used as an external flag. The
OMAP5910 device does not have an XF pin, so this bit
is provided to show tha value of the XF bit in the DSP
core status register (ST3)

1 R 1

1 Reset signal from MPU to DSP 1 R 1

0 Master reset (active low) 1 R 1

Table 55. DSP Boot Configuration Register (DSP_BOOT_CONFIG) − Offset: x18

Bits Description Size Access

Value at
Hardware

Reset

15−10 Reserved 6 R/W 0

9−4 Reserved 6 R/W 0

3−0 DSP boot mode inputs 4 R/W 0

MPU Interface

MPU Subsystems76 SPRU671

Table 56. DSP MPUI Configuration Register (DSP_API_CONFIG) − Offset: x1C

Bits Description Size Access

Value at
Hardware

Reset

15−0 APISIZE: Specify which blocks of SARAM are accessible by the
MPUI in HOM (exclusive access).

The amount of SARAM is calculated by the formula:
API_SIZE/2) * 8K bytes, starting from SARAM0

16 R/W 0xFFFF

Table 57 decodes SARAM 0 through SARAM 11 on 8K boundaries.

Table 57. Decoding SARAM 0 Through SARAM 11 on 8K Boundaries

SARAM

APISIZE (15..0) 11−8 7−4 3−0

0X0000 − 0X0001 0000 0000 0000

0X0002 − 0X0003 0000 0000 0001

0X0004 − 0X0005 0000 0000 0011

0X0006 − 0X0007 0000 0000 0111

0X0008 − 0X0009 0000 0000 1111

0X000A − 0X000B 0000 0001 1111

0X000C − 0X000D 0000 0011 1111

0X000E − 0X000F 0000 0111 1111

0X0010 − 0X0011 0000 1111 1111

0X0012 − 0X0013 0001 1111 1111

0X0014 − 0X0015 0011 1111 1111

0X0016 − 0X0017 0111 1111 1111

0X0018 − OTHERS 1111 1111 1111

Notes: 1) 0: Shared-access RAM

2) 1: Host-only RAM (no DSP access)

MPU TI Peripheral Bus Bridges

77MPU SubsystemsSPRU671

10 MPU TI Peripheral Bus Bridges

The MPU TI peripheral bus (TIPB) bridges (see Figure 23) connect the TI925T
to its peripherals. Two MPU TIPBs, one private and one public, are
implemented to reduce access latency and improve system performance.
Concurrent transfers are possible if there are no resource conflicts; for
example, when DMA transfers to the public TIPB and the TI925T both access
the private TIPB simultaneously. The timers are connected on the private
peripheral bus for low-latency access by an operating system, and the camera
is located on the public peripheral bus for access by the DMA.

The private and public peripheral bridges are compatible with the TIPB
specification.

Figure 23. MPU TI Peripheral Bus Bridge Connections

TI
peripheral

bus
bridge

(private)

Logic
Mux

TI peripheral
bus

32

Private
TI peripheral bus

TI peripheral bus

Mux
Logic 32

peripheral

(public)
bridge

bus

Public
TI

TI peripheral
bus

System
DMA

controller

MPU

10.1 8-Bit, 16-Bit, and 32-Bit Word Access

The MPU TIPB handles 8-bit, 16-bit, and 32-bit word accesses. Data is loaded
and stored in little-endian fashion. Data is always right-justified on the TIPB.

MPU TI Peripheral Bus Bridges

MPU Subsystems78 SPRU671

10.2 TIPB Allocation

The MPU TIPBs are shared between the MPU and the DMA controller. A
bus-allocation module is provided to resolve conflicts and prioritize accesses.

The value written in the TIPB_BUS_ALLOC register defines the priority. If the
value is 0, the MPU memory interface has priority over the DMA controller. If
the value equals n (n from 1 to 7), the DMA controller has priority over the MPU
and it can perform n accesses before yielding to the MPU.

10.3 Access Factor and Time-Out

The MPU TIPB handles peripherals of varying speeds. To accommodate slow
peripherals, the access cycle (strobe period) is programmable.

The frequency of the MPU public and private TIPB strobe 1 and 0 are derived
from the traffic controller clock (CLKM3). For both TIPBs, bits 3−0 (strobe 0)
and bits 7−4 (strobe 1) of the TIPB control register (TIPB_CNTL) can be used
to configure the access factor and consequently the strobe frequencies (as
shown in Table 58).

Table 58. Access Factor

Number of Wait States
(Access Factor) Strobe Frequency

0 TC Clk/1

1 TC Clk/2

2 TC Clk/3

3 TC Clk/4

... ...

15 TC Clk/16

Each bridge in OMAP has two strobe lines, and a different division factor can
be programmed on each line.

A TIPB access time-out limits the maximum time a peripheral can stall the
processor. When starting a cycle on TIPB, the time-out counter is loaded with
this value (see TIPB_CNTL and ENHANCED_TIPB_CNTL registers). If the
current cycle is not finished when the counter reaches 0, the cycle is aborted
and an abort exception is generated to the MPU. The maximum value is 256
bridge clock cycles.

MPU TI Peripheral Bus Bridges

79MPU SubsystemsSPRU671

10.4 MPU Posted Write

The MPU can perform a posted write. When posted write is enabled inside the
MPU_TIPB_CNTL register, data sent by the MPU is buffered in the MPU TIPB
and the MPU can keep going to another access. The bridge takes care of the
access towards the TIPB; hence the MPU is not stalled during the access.

10.5 Pipeline Mode

When the pipeline mode is enabled in the ENHANCED_TIPB_CNTL register,
incoming signals from MPU and DMA are buffered. Use the pipeline mode
when running at a high frequency.

10.6 Abort

When abort interrupt is enabled in the ENHANCED_TIPB_CNTL register, an
interrupt is sent to the MPU interrupt handler when a TI peripheral read or write
access is aborted or when any TI peripheral access has a size mismatch.
In case of abort or size mismatch, the address and data of the corresponding
access are saved in the following registers: ADDRESS_DBG,
DATA_DEBUG_LOW, DATA_DEBUG_HIGH, DEBUG_CNTR_SIG.

10.7 TIPB Bridge Registers

Table 59 and Table 60 list the TIPB bridge registers. Table 61 through Table 68
describe the register bits.

Table 59. TIPB (Private) Bridge Registers

Register Name Descriptions R/W Size Address
Reset
Value

TIPB_CNTL TIPB control R/W 16 bits FFFE:CA00 0xFF11

TIPB_BUS_ALLOC TIPB bus allocation R/W 16 bits FFFE:CA04 0x0009

MPU_TIPB_CNTL MPU TIPB control R/W 16 bits FFFE:CA08 0x0000

ENHANCED_TIPB_CNTL Enhanced TIPB control R/W 16 bits FFFE:CA0C 0xFFFF

ADDRESS_DBG Debug address R 16 bits FFFE:CA10 0xFFFF

DATA_DEBUG_LOW Debug data LSB R 16 bits FFFE:CA14 0xFFFF

DATA_DEBUG_HIGH Debug data MSB R 16 bits FFFE:CA18 0xFFFF

DEBUG_CNTR_SIG Debug control signals R 16 bits FFFE:CA1C 0x00F8

MPU TI Peripheral Bus Bridges

MPU Subsystems80 SPRU671

Table 60. TIPB (Public) Bridge Registers

Register Name Descriptions R/W Size Address
Reset
Value

TIPB_CNTL TIPB control R/W 16 bits FFFE:D300 0xFF11

TIPB _BUS_ALLOC TIPB bus allocation R/W 16 bits FFFE:D304 0x0009

MPU_TIPB_CNTL MPU TIPB control R/W 16 bits FFFE:D308 0x0000

ENHANCED_TIPB_CNTL Enhanced TIPB control R/W 16 bits FFFE:D30C 0xFFFF

ADDRESS_DBG Debug address R 16 bits FFFE:D310 0xFFFF

DATA_DEBUG_LOW Debug data LSB R 16 bits FFFE:D314 0xFFFF

DATA_DEBUG_HIGH Debug data MSB R 16 bits FFFE:D318 0xFFFF

DEBUG_CNTR_SIG Debug control signals R 8 bits FFFE:D31C 0xF8

Table 61. TIPB Control Register (TIPB_CNTL) − Offset: x00

Bits Description Size Access
Reset
Value

15−8 TIPB bus access time out 8 R/W 0xFF

7−4 Division factor of nASTROBE[1] 4 R/W 0x1

3−0 Division factor of nASTROBE[0] 4 R/W 0x1

Table 62. TIPB Bus Allocation Register (TIPB_BUS_ALLOC) − Offset: x04

Bits Value Description Size Access
Reset
Value

5−4 Reserved.

The reset value of these bits does not have to be
changed for this register to operate correctly.

2 R/W 00

3 MPU has higher priority than DMA transfers regarding
TIPB allocation when it is in exception mode.

1 R/W 1

2−0 Defines TIPB priority between MPU and DMA 3 R/W 0x1

0 MPU has priority over DMA.

1 DMA has priority over MPU.

MPU TI Peripheral Bus Bridges

81MPU SubsystemsSPRU671

Table 63. MPU TIPB Control Register (MPU_TIPB_CNTL_REG) − Offset: x08

Bits Value Description Size Access
Reset
Value

1 1 Write buffer is enabled for strobe domain 1. 1 R/W 0

0 Write buffer is bypassed.

0 1 Write buffer is enabled for strobe domain 0. 1 R/W 0

0 Write buffer is bypassed.

Table 64. Enhanced TIPB Control Register (ENHANCED_TIPB_CNTL) − Offset: x0C

Bits Description Size Access
Reset
Value

3 When low, a tc_abort interrupt is sent back to the MPU, when
MPU TIPB access is timed out.

1 R/W 1

2 Reserved − always set to 1. 1 R/W 1

1 When low, an interrupt is sent to the MPU when a TIPB write
access is aborted or when any TIPB access has a size mismatch.
When high, the interrupt is masked.

1 R/W 1

0 A value of 1 enables the time-out feature. 1 R/W 1

Table 65. Address Debug Register (ADDRESS_DBG) − Offset: x10

Bits Description Size Access
Reset
Value

15−0 Address from MPU memory interface saved on abort or
access size mismatch

16 R 0xFFFF

Table 66. Data Debug Register LSB (DATA_DEBUG_LOW) − Offset: x14

Bits Description Size Access
Reset
Value

15−0 Bytes 15−0 of data bus from MPU 16 R 0xFFF

Table 67. Data Debug Register MSB (DATA_DEBUG_HIGH) − Offset: x18

Bits Description Size Access
Reset
Value

15−0 Bytes 31−16 of data bus from MPU 16 R 0xFFFF

MPU Interrupt Handlers

MPU Subsystems82 SPRU671

Table 68. Debug Control Signals Register (DEBUG_CNTR_SIG) − Offset: x1C

Bits Description Size Access
Reset
Value

8 Burst access 1 R 0

7−6 Peripheral memory access size on TIPB 1 R 3

5−4 Memory access size on TIPB 1 R 3

3 Not supervisor mode on TIPB 1 R 1

2 Read not write on TIPB 1 R 0

1 Flag set to 1 when there is a mismatch between memory
access size and peripheral memory access size.

1 R 0

0 Flag set to 1 when TIPB access is aborted. 1 R 0

11 MPU Interrupt Handlers

The MPU only supports two interrupt sources: IRQ and FIQ. However, the
OMAP5910 has numerous peripherals and DMA channels which provide
interrupts. To allow these numerous interrupts to be supported using just two
interrupt sources, an interrupt handler is used. The interrupt handlers allow up
to 32 individual interrupts to be programmed to assert either IRQ or FIQ and
they allow these interrupt sources to be masked as well as prioritized with
relationship to one another. If any of these unmasked interrupts occur, then
either a FIQ or IRQ interrupt occurs.

The OMAP5910 has two layers of interrupt handlers, as shown in Figure 24.
If an unmasked interrupt occurs on the level-2 interrupt handler, it asserts
IRQ_0 of the level-1 interrupt handler. This allows up to 62 interrupt sources
to be supported.

The OMAP5910 device does not support nested interrupts.

11.1 MPU Level-1 Interrupt Handler

The MPU level-1 interrupt handler has 32 interrupt request lines (IRQ_[31:0]).
These interrupts are generated by peripherals such as the timers, camera,
LCD, the system DMA controller, and the DSP. The interrupt handler handles
edge-triggered or level-sensitive interrupts (individually programmable via the
ILRn registers—see Table 76). All interrupts are maskable (individually
enabled and disabled via the mask interrupt register (MIR)—see Table 72)
with an internal register. The interrupt source information can be read back

MPU Interrupt Handlers

83MPU SubsystemsSPRU671

from the ITR register (see Table 71, Table 72, and Table 73). Interrupt priority
is also programmable (ILRn registers) to allow flexibility for different
applications (see Table 6−1). The output from the interrupt handler is routed
to one of the two MPU interrupt (IRQ or FIQ—see Figure 24) inputs according
to that interrupt ILRn configuration bit.

A clock request mechanism is implemented to wake up and provide a clock
to the interrupt handler when the OMAP5910 device is in one of the sleep
modes.

Figure 24. MPU Interrupt Handlers

Level 2
interrupt
handler

Keypad IRQ 1

FAC IRQ 0

MicroWire transmit IRQ 2

MicroWire receive IRQ 3

MPUIO IRQ 5

I2C IRQ 4

USB HHC 1 IRQ 6

USB HHC 2 IRQ 7

Reserved IRQ 9

Reserved IRQ 8

McBSP3 transmit IRQ 10

McBSP3 receive IRQ 11

McBSP1 receive IRQ 13

McBSP1 transmit IRQ 12

UART1 IRQ 14

UART2 IRQ 15

MCSI2 frame error IRQ 17

MCSI1 frame error IRQ 16

Reserved IRQ 18

Reserved IRQ 19

1-wire IRQ 21

USB function gen IRQ 20

32K timer IRQ 22

MMC IRQ 23

RTC timer IRQ 25

ULPD gauging IRQ 24

RTC alarm IRQ 26
Reserved IRQ 27

USB function ISO on IRQ 29

DSP MMU IRQ 28

USB function non ISO on IRQ 30
McBSP2 receive overflow IRQ 31

IRQ from Level2

Camera interrupt

Level 1
Interrupt
Handler

IRQ 1

IRQ 0

IRQ 2

IRQ 3

IRQ 5

IRQ 4

IRQ 6

IRQ 7

IRQ 9

IRQ 8

IRQ 10

IRQ 11

IRQ 13

IRQ 12

IRQ 14

IRQ 15

IRQ 17

IRQ 16

IRQ 18

IRQ 19

IRQ 21

IRQ 20

IRQ 22

IRQ 23

IRQ 25

IRQ 24

IRQ 26

IRQ 27

IRQ 29

IRQ 28

IRQ 30

IRQ 31

FIQ from Level 1

IRQ from Level 1 MPU

Reserved

External FIQ

McBSP2 SPI transmit

McBSP2 SPI receive

RTDX

DSP MMU ABORT

Host INT

ABORT

DSP mailbox 1

DSP mailbox 2

Reserved

Private bus bridge

GPIO

UART3

Timer 3

Local bus MMU

Reserved

DMA CH0/6

DMA CH1/7

DMA CH2/8

DMA CH3

DMA CH4

DMA CH5

DMA CH LCD

Timer 1

Watchdog timer

Public bus bridge

Local bus I/F

Timer 2

LCD CTRL

MPU Interrupt Handlers

MPU Subsystems84 SPRU671

11.2 MPU Level 2 Interrupt Handler

Because the number of interrupts that the OMAP5910 device must manage
is greater than 32, a second interrupt handler is used. The resulting interrupt
is connected to the IRQ_0 of the TI925T RISC processor interrupt handler,
which must be programmed as a level interrupt. The added (L2) interrupt
handler is similar to the level-1 interrupt handler.

The result of connecting the two interrupt handlers in a cascade manner is to
increase the total number of input interrupts from 32 to 62.

The simplified sequence for the MPU to receive an input interrupt is as follows:

Step 1: Read the SIR_IRQ_CODE register of the level-1 MPU interrupt
handler.

Step 2: If the interrupt is caused by the level-2 interrupt handler (as indicated
by an IRQ of 0), read the SIR_IRQ_CODE register of the level-2
interrupt handler.

Step 3: If the interrupt is a level interrupt, the corresponding interrupt routine
must first clear the interrupt source (usually by writing to a register
in the module generating the interrupt) or at least mask the interrupt.
Then it must write 1 into the NEW_IRQ_AGR field of the level-2 inter-
rupt handler CONTROL_REG. Then, the ITR register of the level- 1
interrupt handler must be cleared. Finally, 1 must be written into the
NEW_IRQ_AGR field of the level-1 interrupt handler.

Step 4: If it is an edge interrupt, read the status register to determine the
cause of the interrupt, start interrupt routine, then write 1 into the
NEW_IRQ_AGR field of the level-2 interrupt handler
CONTROL_REG. Clear the ITR of the level 1 interrupt handler, then
write 1 into the NEW_IRQ_AGR field of the level-1 interrupt handler
CONTRL_REG.

Level-1 and Level-2 Interrupt Mapping

85MPU SubsystemsSPRU671

12 Level-1 and Level-2 Interrupt Mapping

Table 69 lists the mapping of the incoming interrupts.

IRQ_ABORT (IRQ_9) is the traffic controller abort IRQ. It is also connected to
DSP IRQ_12. This interrupt comes from either a TIPB bus or the MPUI and
is caused by a time-out abort.

Table 69. Level-1 and Level-2 OMAP5910 MPU Interrupt Mapping

Incoming Interrupts

Default
Sensitivity

Configuration
Interrupt Line

on Level-1
Interrupt Line

on Level-2

Level-2 interrupt handler IRQ Level IRQ_0 —

Camera interrupt Level IRQ_1 —

Reserved IRQ_2 —

External FIQ Edge IRQ_3 —

McBSP2 TX interrupt Edge IRQ_4 —

McBSP2 RX interrupt Edge IRQ_5 —

IRQ_RTDX† Level IRQ_6 —

IRQ_DSP_MMU_ABORT Level IRQ_7 —

IRQ_HOST_INT Level IRQ_8 —

IRQ_ABORT Level IRQ_9 —

IRQ_DSP_MAILBOX1 Level IRQ_10 —

IRQ_DSP_MAILBOX2 Level IRQ_11 —

Reserved

IRQ_TIPB_BRIDGE_PRIVATE Level IRQ_13 —

IRQ_GPIO Level IRQ_14 —

IRQ_UART3 Level IRQ_15 —

IRQ_TIMER3 Edge IRQ_16 —

IRQ_LB_MMU Level IRQ_17 —

Reserved

IRQ_DMA_CH0_CH6 Level IRQ_19 —

IRQ_DMA_CH1_CH7 Level IRQ_20 —

IRQ_DMA_CH2_CH8 Level IRQ_21 —

† IRQ_RTDX is used in emulation for the Code Composer Studio RTDX (real time data exchange) interrupt.

Level-1 and Level-2 Interrupt Mapping

MPU Subsystems86 SPRU671

Table 69. Level-1 and Level-2 OMAP5910 MPU Interrupt Mapping (Continued)

Incoming Interrupts
Interrupt Line

on Level-2
Interrupt Line

on Level-1

Default
Sensitivity

Configuration

IRQ_DMA_CH3 Level IRQ_22 —

IRQ_DMA_CH4 Level IRQ_23 —

IRQ_DMA_CH5 Level IRQ_24 —

IRQ_DMA_CH_LCD Level IRQ_25 —

IRQ_TIMER1 Edge IRQ_26 —

IRQ_WD_TIMER Edge IRQ_27 —

IRQ_TIPB_BRIDGE_PUBLIC Level IRQ_28 —

IRQ_LOCAL_BUS_I/F Level IRQ_29 —

IRQ_TIMER2 Edge IRQ_30 —

IRQ_LCD_CTRL Level IRQ_31 —

FAC Level IRQ0 IRQ_00

Keyboard Edge IRQ0 IRQ_01

MicroWire TX Edge IRQ0 IRQ_02

MicroWire RX Edge IRQ0 IRQ_03

I2C Edge IRQ0 IRQ_04

MPUIO Level IRQ0 IRQ_05

USB HHC 1 Level IRQ0 IRQ_06

Reserved IRQ0 IRQ_07

Reserved IRQ0 IRQ_08

Reserved IRQ0 IRQ_09

McBSP3 TX interrupt Edge IRQ0 IRQ_10

McBSP3 RX interrupt Edge IRQ0 IRQ_11

McBSP1 TX interrupt Edge IRQ0 IRQ_12

McBSP1 RX interrupt Edge IRQ0 IRQ_13

UART1 (Bluetooth) Level IRQ0 IRQ_14

UART2 (communication) Level IRQ0 IRQ_15

† IRQ_RTDX is used in emulation for the Code Composer Studio RTDX (real time data exchange) interrupt.

Level-1 and Level-2 Interrupt Mapping

87MPU SubsystemsSPRU671

Table 69. Level-1 and Level-2 OMAP5910 MPU Interrupt Mapping (Continued)

Incoming Interrupts
Interrupt Line

on Level-2
Interrupt Line

on Level-1

Default
Sensitivity

Configuration

MCSI1 combined TX/RX/frame error
interrupt

Level IRQ0 IRQ_16

MCSI2 combined TX/RX/frame error
interrupt

Level IRQ0 IRQ_17

Reserved IRQ0 IRQ_18

Reserved IRQ0 IRQ_19

USB function Geni interrupt Level IRQ0 IRQ_20

1-Wire interrupt Level IRQ0 IRQ_21

Timer 32K interrupt Edge IRQ0 IRQ_22

MMC interrupt Level IRQ0 IRQ_23

ULPD interrupt Level IRQ0 IRQ_24

RTC periodical timer Edge IRQ0 IRQ_25

RTC alarm Level IRQ0 IRQ_26

Reserved IRQ0 IRQ_27

DSPMMU IRQ IRQ0 IRQ_28

USB function IRQ ISO On Level IRQ0 IRQ_29

USB function IRQ Non-ISO On Level IRQ0 IRQ_30

McBSP2 RX OVERFLOW It Edge IRQ0 IRQ_31

† IRQ_RTDX is used in emulation for the Code Composer Studio RTDX (real time data exchange) interrupt.

Note:

This version of the interrupt controller does not support nested interrupts.

Level-sensitive interrupts remain asserted until acknowledged.

Interrupt Handler Level-1 and Level-2 Registers

MPU Subsystems88 SPRU671

Edge-triggered interrupts do not remain asserted. The interrupt is cleared
upon reading the SIR registers or writing a 0 to the ITR registers in the interrupt
handler.

13 Interrupt Handler Level-1 and Level-2 Registers
There are two sets of interrupt handler registers: one for the level-1 handler,
the other for the level-2 handler (see Table 70). Table 71 through Table 77
describe the register bits.

Base address for interrupt handler 1: FFFE:CB00

Base address for interrupt handler 2: FFFE:0000

Bit width: 32 bits

Table 70. Interrupt Handler Registers

Name Description R/W Bits Offset
Reset
Value

ITR Interrupt input R/W 32 bits 0X00 0x0000 0000

MIR Mask interrupt R/W 32 bits 0X04 0xFFFF FFFF

SIR_IRQ_CODE Interrupt encoded source (IRQ) R 5 bits 0X10 0x00

SIR_FIQ_CODE Interrupt encoded source (FIQ) R 5 bits 0X14 0x00

CONTROL_REG Interrupt control register R/W 2 bits 0X18 0x0

ILR0 Interrupt priority level for IRQ 0 R/W 7 bits 0X1C 0x00

ILR1 Interrupt priority level for IRQ 1 R/W 7 bits 0X20 0x00

ILR2 Interrupt priority level for IRQ 2 R/W 7 bits 0X24 0x00

ILR3 Interrupt priority level for IRQ 3 R/W 7 bits 0X28 0x00

ILR4 Interrupt priority level for IRQ 4 R/W 7 bits 0X2C 0x00

ILR5 Interrupt priority level for IRQ 5 R/W 7 bits 0X30 0x00

ILR6 Interrupt priority level for IRQ 6 R/W 7 bits 0X34 0x00

ILR7 Interrupt priority level for IRQ 7 R/W 7 bits 0X38 0x00

ILR8 Interrupt priority level for IRQ 8 R/W 7 bits 0X3C 0x00

ILR9 Interrupt priority level for IRQ 9 R/W 7 bits 0X40 0x00

ILR10 Interrupt priority level for IRQ 10 R/W 7 bits 0X44 0x00

ILR11 Interrupt priority level for IRQ 11 R/W 7 bits 0X48 0x00

Interrupt Handler Level-1 and Level-2 Registers

89MPU SubsystemsSPRU671

Table 70. Interrupt Handler Registers (Continued)

Name
Reset
ValueOffsetBitsR/WDescription

ILR12 Interrupt priority level for IRQ 12 R/W 7 bits 0X4C 0x00

ILR13 Interrupt priority level for IRQ 13 R/W 7 bits 0X50 0x00

ILR14 Interrupt priority level for IRQ 14 R/W 7 bits 0X54 0x00

ILR15 Interrupt priority level for IRQ 15 R/W 7 bits 0X58 0x00

ILR16 Interrupt priority level for IRQ 16 R/W 7 bits 0X5C 0x00

ILR17 Interrupt priority level for IRQ 17 R/W 7 bits 0X60 0x00

ILR18 Interrupt priority level for IRQ 18 R/W 7 bits 0X64 0x00

ILR19 Interrupt priority level for IRQ 19 R/W 7 bits 0X68 0x00

ILR20 Interrupt priority level for IRQ 20 R/W 7 bits 0X6C 0x00

ILR21 Interrupt priority level for IRQ 21 R/W 7 bits 0X70 0x00

ILR22 Interrupt priority level for IRQ 22 R/W 7 bits 0X74 0x00

ILR23 Interrupt priority level for IRQ 23 R/W 7 bits 0X78 0x00

ILR24 Interrupt priority level for IRQ 24 R/W 7 bits 0X7C 0x00

ILR25 Interrupt priority level for IRQ 25 R/W 7 bits 0X80 0x00

ILR26 Interrupt priority level for IRQ 26 R/W 7 bits 0X84 0x00

ILR27 Interrupt priority level for IRQ 27 R/W 7 bits 0X88 0x00

ILR28 Interrupt priority level for IRQ 28 R/W 7 bits 0X8C 0x00

ILR29 Interrupt priority level for IRQ 29 R/W 7 bits 0X90 0x00

ILR30 Interrupt priority level for IRQ 30 R/W 7 bits 0X94 0x00

ILR31 Interrupt priority level for IRQ 31 R/W 7 bits 0X98 0x00

ISR Software interrupt set register R/W 32 bits 0X9C 0x0000 0000

Interrupt Handler Level-1 and Level-2 Registers

MPU Subsystems90 SPRU671

Table 71. Interrupt Input Register (ITR)

Bits Field Description
Reset
Value

31 IRQ_31 Interrupt request—1 indicates that the peripheral occupying the
IRQ_31 address space has requested interrupt service from the
MPU.

An edge-triggered interrupt is stored in this register as an
incoming interrupt. When the MPU reads the SIR_IRQ_CODE or
the SIR_FIQ_CODE register, the bit corresponding to the
pending interrupt is reset.

The MPU can also individually clear each bit by writing a 0 to that
bit. (Writing a 1 to the bit does not change the previous state.
This can be used just before the MPU unmasks some interrupts
to ignore specific interrupts.

0

30−0 IRQ_30−IRQ_0 (Same as bit 31) 0

Table 72. Mask Interrupt Register (MIR)

Bits Field Description
Reset
Value

31 IRQ_31_MSK Interrupt mask bit—1 prevents IRQ_31 from interrupting MPU
program flow.

If the peripheral on IRQ_31 has been configured to request an
interrupt but masked out in this register, the IRQ_31 bit in the IRQ
register is still set on an interrupt event (and can be read by the
MPU) but does not interrupt program flow.

1

30−0 IRQ_30_MSK−
IRQ_0_MSK

(Same as bit 31) 1

Table 73. Binary-Coded Source IRQ Register (SIR_IRQ_CODE)

Bits Field Description
Reset
Value

4−0 IRQ_NUM This register indicates the IRQ interrupt that is currently being
serviced by the MPU. Reading this register clears the
corresponding bit in the ITR register if the interrupt is configured
as edge triggered.

0

Interrupt Handler Level-1 and Level-2 Registers

91MPU SubsystemsSPRU671

Table 74. Binary-Coded Source FIQ Register (SIR_FIQ_CODE)

Bits Field Description
Reset
Value

4−0 FIQ_NUM This register indicates the IRQ interrupt that is currently being
serviced by the MPU. Reading this register clears the
corresponding bit in the ITR register if the interrupt is configured
as edge triggered.

0

This register is only used by the level-1 handler, because the level-2 handler
cannot be programmed to generate FIQ interrupts.

Table 75. Control Register (CONTROL_REG)

Bits Field Description
Reset
Value

1 NEW_FIQ_AGR New FIQ agreement. Writing a 1 resets FIQ output, clears source
FIQ register, and enables new IRQ generation.

0

0 NEW_IRQ_AGR New IRQ agreement. Writing a 1 resets IRQ output, clears source
IRQ register, and enables new IRQ generation.

0

Table 76. Interrupt Level Registers (ILR0...ILR31)

Bits Field Value Description
Reset
Value

6−2 PRIORITY Defines the priority level when the corresponding
interrupt is routed to IRQ or FIQ (31 down to 0)

0

1 SENS_EDGE 0 Interrupt is falling-edge-triggered. 0

1 Interrupt is low-level-triggered.

0 FIQ† 0 Interrupt is routed to IRQ. 0

1 Interrupt is routed to FIQ.

† IRQ is the only valid setting fo this bit when used with the level 2 handler—it cannot be used to generate FIQ sources.

Configuration Module

MPU Subsystems92 SPRU671

Table 77. Interrupt Set Register (ISR)

Bits Field Description
Reset
Value

31−0 SWI[31:0] Software interrupt set register. Writing a 1 to any bit generates an
interrupt to the MPU if the corresponding ILRn is configured as
edge-triggered; otherwise no interrupt is generated. A read to this
register always returns 0x00000000.

0

14 Configuration Module

The OMAP5910 configuration module allows the software of the OMAP5910
device to control the various static modes supported by the device. This
module is the primary point of control for the following areas of the OMAP5910
device:

� Functional I/O multiplexing
� Debug and observation I/O multiplexing
� I/O gating and inhibiting for power-down modes
� Pull-down enable control
� Interface voltage selection
� Pseudostatic module configuration

Note:

This configuration must be done only during the boot time while the
OMAP5910 peripherals are under reset.

14.1 Configuration Register Capabilities

The OMAP5910 configuration module is functionally simple. The module is a
bank of 32-bit registers that can be read and written by firmware. This bank of
registers can be broken down into eight primary sections. These are:

� OMAP5910 generic multiplexing registers (0x0010h to 0x0038h address
range)

� OMAP5910 pullup/pulldown control registers (0x0040h to 0x004Ch
address range)

� OMAP5910 gating and inhibiting registers (0x0050h address range)

� OMAP5910 voltage control registers (0x0060h address range)

� OMAP5910 test and debug registers (0x0070h address range)

Configuration Module

93MPU SubsystemsSPRU671

� OMAP5910 module configuration registers (0x0080h address range)

14.2 OMAP5910 Native and Compatibility Modes
The major functionality of this module beyond the register banks is to support
compatibility with the previous prototype devices via the implementation of
native and compatibility modes. The OMAP5910 device resets to compatibility
mode. This functionality is in place to allow software compatibility of
OMAP5910 with early development devices. The OMAP5910 configuration
registers have no effect on the compatibility mode. The firmware must first
write 0x0000EAEFh to the COMP_MODE_CTRL_0 register to utilize the pin
multiplexing and device configuration features available in native mode. Be
careful when enabling the native mode.

All OMAP5910 configuration registers reset to 0x0000h at power-on reset. It
is advisable to follow the following procedure before enabling the OMAP5910
mode:

1) Determine the desired values for each OMAP5910 configuration register.
2) Program the desired values by writing to the appropriate register.
3) Program the COMP_MODE_CTRL_0 register to 0x0000EAEFh.
4) The desired modes are now active.

This procedure allows the user to select all OMAP5910 configuration settings
with a series of register writes, then to enable all of the modes simultaneously.

14.3 OMAP5910 Generic Pin Multiplexing and Pullup/Pulldown Control
The OMAP5910 configuration module was developed with future versions of
OMAP5910 in mind. To enable software compatibility between OMAP5910
and future versions, this module allows for up to eight multiplexing options on
all device pins and independent pin-by-pin pulldown control except:

� SDRAM
� Flash memory
� LCD
� Power and ground pins
� Analog I/O functions
� Test and emulation pins

The OMAP5910 FUNC_MUX_CTRL (3–D) registers control this generic
functional pin multiplexing. The OMAP5910 PULL_DWN_CTRL (0–3)
registers control the independent pin-by-pin pulldown enables.

Once the desired functionality is determined, the OMAP5910
FUNC_MUX_CTRL (3–D) registers can be programmed to correspond to the
chosen multiplexing. The value for the three FUNC_MUX_CTRL register bits
that correspond to a given pin can be determined in Table 78.

Configuration Module

MPU Subsystems94 SPRU671

Table 78. Functional Pin Multiplexing Control Register 3
(FUNC_MUX_CTRL3...FUNC_MUX_CTRLD)

FUNC_MUX_CTRL(2:0)
Register Value Corresponding Functional Modes

000 Default configuration/functional multiplexing 0

001 Functional multiplexing 1

010 Functional multiplexing 2

011 Functional multiplexing 3

100 Functional multiplexing 4 (Reserved)

101 Functional multiplexing 5 (Reserved)

110 Functional multiplexing 6 (Reserved)

111 Functional multiplexing 7 (Reserved)

For a given interface, the value of the FUNC_MUX_CTRL(2:0) register can
vary from pin to pin. For example, the USB1_HOST port is split between
functional multiplexing 2 and functional multiplexing three modes in Appendix
A, Input/Output Descriptions. In this case four of the FUNC_MUX_
CTRL(2:0) registers has a value of 001 and the other four
FUNC_MUX_CTRL(2:0) registers have a value of 010.

14.4 OMAP5910 MMC/SD Pin Multiplexing

The enabling of the MMC/SD function on the device’s pins is a special case
on the OMAP5910 device. The MMC/SD pin interface uses the state of a de-
vice pin (STAT_VAL/WKUP) at release of power-on reset to determine if the
MMC/SD function is enabled at the device’s pins. The power-on reset sam-
pling of a high level on this pin forces the device’s I/O into a state that is consis-
tent with MMC/SD. This means that several pullups are enabled when in MMC/
SD mode. Users must program the OMAP5910 configuration registers to set
up the proper functional multiplexing modes. Users of 4-bit MMC/sd must be
particularly aware that the CONF_MOD_MSMMC_VSS_HIZ_OVERRIDE bit
in the MOD_CONF_CTRL_0 register must be programmed to a 1 to enable
the use of the MMC.DAT2 device pin. For further details on the MMC/SD pin
multiplexing on the OMAP5910 device, see SPRU680 MMC/SD Reference
Guide.

http://www-s.ti.com/sc/techlit/spru680

OMAP5910 Configuration Registers

95MPU SubsystemsSPRU671

15 OMAP5910 Configuration Registers

Table 79 lists the 32-bit read/write configuration registers. Table 80 through
Table 102 describe the register bits. The compatibility mode control 0 register
(COMP_MODE_CTRL_0) must be programmed to 0xEAEFh for any of these
configuration registers to exercise their associated control. The base address
for the configuration registers is FFFE:1000.

Table 79. Configuration Registers

Registers Description Offset

FUNC_MUX_CTRL_0 Functional multiplexing control 0 0x00

FUNC_MUX_CTRL_1 Functional multiplexing control 1 0x04

FUNC_MUX_CTRL_2 Functional multiplexing control 2 0x08

COMP_MODE_CTRL_0 Compatibility mode control 0 0x0C

FUNC_MUX_CTRL_3 Functional multiplexing control 3 0x10

FUNC_MUX_CTRL_4 Functional multiplexing control 4 0x14

FUNC_MUX_CTRL_5 Functional multiplexing control 5 0x18

FUNC_MUX_CTRL_6 Functional multiplexing control 6 0x1C

FUNC_MUX_CTRL_7 Functional multiplexing control 7 0x20

FUNC_MUX_CTRL_8 Functional multiplexing control 8 0x24

FUNC_MUX_CTRL_9 Functional multiplexing control 9 0x28

FUNC_MUX_CTRL_A Functional multiplexing control A 0x2C

FUNC_MUX_CTRL_B Functional multiplexing control B 0x30

FUNC_MUX_CTRL_C Functional multiplexing control C 0x34

FUNC_MUX_CTRL_D Functional multiplexing control D 0x38

PULL_DWN_CTRL_0 Pulldown control 0 0x40

PULL_DWN_CTRL_1 Pulldown control 1 0x44

PULL_DWN_CTRL_2 Pulldown control 2 0x48

PULL_DWN_CTRL_3 Pulldown control 3 0x4C

GATE_INH_CTRL_0 Gate and inhibit control 0 0x50

VOLTAGE_CTRL_0 Voltage control 0 0x60

TEST_DBG_CTRL_0 Test debug control 0 0x70

MOD_CONF_CTRL_0 Module configuration control 0 0x80

OMAP5910 Configuration Registers

MPU Subsystems96 SPRU671

Table 80. Functional Multiplexing Control 0 Register (FUNC_MUX_CTRL_0)

Bits Field Value Description R/W
Reset
Value

31 CTRL_288_1 This bit configures the control mode 288_1
which enables the control of the OMAP
chip_nwakeup signal from the static_valid pad.

R/W 0x0

0 Functional mode; ULPD controls the OMAP
chip_nwakeup signal.

1 Debug; the OMAP5910 static_valid pad controls
the OMAP chip_nwakeup signal.

This bit is valid in compatibility and native
modes.

30−23 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

22 LB_RESET_DISABLE This bit holds the OMAP local bus reset input
active. Set this to 1 when using OMAP5910
USB_HHC module.

R/W 0x0

0 Local bus RESET <= 0

1 Local bus RESET <= USB_HHC LB reset

This bit is valid in compatibility and native
modes.

21 RESERVED Reserved. This bit must always be written as 0. R/W 0x0

20 LRU_SEL This field configures the OMAP traffic controller
arbitration algorithm.

R/W 0x0

0 LRU priority scheme is used for arbitration.

1 Dynamic priority scheme is used for arbitration.

This bit must only be changed if the DSP is in
reset. This bit is valid in compatibility and native
modes.

OMAP5910 Configuration Registers

97MPU SubsystemsSPRU671

Table 80. Functional Multiplexing Control 0 Register (FUNC_MUX_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

19 VBUS_CTRL This bit can be programmed to indicate an
external USB insertion/disconnection to the
OMAP5910 USB core.

R/W 0x0

0 Indicates an external USB disconnection

1 Indicates an external USB insertion

This bit is valid in compatibility and native
modes. There are several methods for VBUS
detect in native mode.

18 VBUS_MODE Selects the USB vbus_ctrl input source, used
for USB insertion/disconnection detection.

R/W 0x0

0 USB input vbus_ctrl <= Hardware detection
(see bit (7) of the MOD_CONF_CTRL_0
register)

1 USB input vbus_ctrl <= OMAP5910
configuration VBUS_CTRL bit

17−15 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

14 NRESET_ENABLE Allows AND gating of OMAP5910 outputs with
the OMAP CHIP_NRESET_OUT

R/W 0x0

0 Disabled

1 Allowed

This bit is valid in compatibility and native
modes.

13 PWR_MASK_IN 0 Does not allow AND gating of OMAP5910
inputs with COM_PWR_REQ (GPIO9) and
COM_STS (MPUIO(3)) OMAP5910 input pins

R/W 0x0

1 Allows AND gating of OMAP5910 inputs with
COM_PWR_REQ (GPIO9) and COM_STS
(ARMIO3) OMAP5910 input pins

This bit is valid in compatibility and native
modes.

OMAP5910 Configuration Registers

MPU Subsystems98 SPRU671

Table 80. Functional Multiplexing Control 0 Register (FUNC_MUX_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

12 PWR_MASK_OUT 0 Does not allow AND gating of OMAP5910
outputs with COM_PWR_REQ (GPIO9) and
COM_STS (MPUIO3) OMAP5910 input pins

R/W 0x0

1 Allows AND gating of OMAP5910 outputs with
COM_PWR_REQ (GPIO9) and COM_STS
(MPUIO3) OMAP5910 input pins

This bit is valid in compatibility and native
modes.

11 BVLZ_MASK_IN 0 Does not allow AND gating of OMAP5910
inputs with BFAIL/EXT_FIQ OMAP5910 input
pin

R/W 0x0

1 Allows AND gating of OMAP5910 inputs with
BFAIL/EXT_FIQ OMAP5910 input pin

This bit is valid in compatibility and native
modes.

10 BVLZ_MASK_OUT 0 Does not allow AND gating of outputs with
BFAIL/EXT_FIQ OMAP5910 input pin

R/W 0x0

1 Allows AND gating of outputs with
BFAIL/EXT_FIQ OMAP5910 input pin

This bit is valid in compatibility and native
modes.

9−0 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

Table 81. Functional Multiplexing Control 1 Register (FUNC_MUX_CTRL_1)

Bits Field Description R/W
Reset
Value

31−0 RESERVED Reserved. These bits must always be written as 0. R/W 0x00000000

OMAP5910 Configuration Registers

99MPU SubsystemsSPRU671

Table 82. Functional Multiplexing Control 2 Register (FUNC_MUX_CTRL_2)

Bits Field Description R/W
Reset
Value

31−19 RESERVED Reserved. These bits must always be written as 0. R/W 0x00000000

18−13 DMAREQ_OBS This 6-bit field can be used to control the DMA re-
quests observability mux.

When a 6-bit value is written in this field, the corre-
sponding interrupt signal is output on the
UART3.RX pin for visibility.

Legal values are from 0 to 50. 0 is the functional
mode, values between 1 and 50 are for
observability mode.

0: Default; for i = 1 to 19: observability, pin
UART3.RX <= DSP DMA request(i), output; for i =
20 to 50: observability, pin UART3.RX <= system
DMA request(i−20), output

R/W 0x0000

12−6 IT_OBS This 7-bit field can be used to control the interrupt
observability mux.

When a 7-bit value is written in this field, the corre-
sponding interrupt signal is output on the
UART3.TX pin for visibility.

Legal values are from 0 to 101. 0 is the functional
mode; values between 1 and 101 are for
observability mode.

0: Default; for i in 1 to 16: observability, UART3.TX
pin <= DSP level2 interrupt(i−1);
for i in 17 to 37: observability, UART3.TX pin <=
DSP level1 interrupt(i−17);
for i in 38 to 69: observability, UART3.TX pin <=
MPU level1 interrupt(i−38);
for i in 70 to 101: observability, UART3.TX pin <=
MPU level2 interrupt(i−70);

R/W 0x0000

5−0 RESERVED Reserved. These bits must always be written as 0. R/W 0x00000000

At reset, the OMAP5910 device configuration registers are software
compatible with previous prototype devices. Writing an 0x0000EAEFh to the
compatibility mode control 0 register (COMP_MODE_CTRL_0) enables the
new
functional multiplexing registers found at offset 0x10h and above.

OMAP5910 Configuration Registers

MPU Subsystems100 SPRU671

Table 83. Compatibility Mode Control 0 Register (COMP_MODE_CTRL_0)

Bits Field Description R/W
Reset
Value

31−16 RESERVED Reserved. These bits must be written to 0x0000h
when enabling the OMAP5910 configuration
registers.

R 0x0000

15−0 CONF_COMPATIBILITY_R These bits must be written to 0x0000EAEFh to
enable OMAP5910 configuration bits at offset
0x10h and above. Take care to set the
configuration bits at 0x10h and above
appropriately before writing 0x0000EAEFh to this
register.

R/W 0x0000

Table 84. Functional Multiplexing Control 3 Register (FUNC_MUX_CTRL_3)

Bits Field Description R/W
Reset
Value

31−0 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

Table 85. Functional Multiplexing Control 4 Register (FUNC_MUX_CTRL_4)

Bits Field Description R/W
Reset
Value

31−30 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

29−27 CONF_CAM_D_7_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[7] at
reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

26−24 CONF_CAM_LCLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.LCLK at
reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

23−21 CONF_CAM_EXCLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.EXCLK at
reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

101MPU SubsystemsSPRU671

Table 85. Functional Multiplexing Control 4 Register (FUNC_MUX_CTRL_4) (Continued)

Bits
Reset
ValueR/WDescriptionField

20−18 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

17−15 CONF_MCBSP1_DOUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP1.DX at
reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

14−12 CONF_MCBSP1_SYNC_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP1.FSX
at reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

11−0 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

Table 86. Functional Multiplexing Control 5 Register (FUNC_MUX_CTRL_5)

Bits Field Description R/W
Reset
Value

31−30 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

29−27 CONF_CAM_RSTZ_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.RSTZ at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

26−24 CONF_CAM_HS_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.HS at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

23−21 CONF_CAM_VS_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.VS at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

MPU Subsystems102 SPRU671

Table 86. Functional Multiplexing Control 5 Register (FUNC_MUX_CTRL_5) (Continued)

Bits
Reset
ValueR/WDescriptionField

20−18 CONF_CAM_D_0_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[0] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

17−15 CONF_CAM_D_1_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[1] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

14−12 CONF_CAM_D_2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[2] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

11−9 CONF_CAM_D_3_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[3] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

8−6 CONF_CAM_D_4_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[4] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

5−3 CONF_CAM_D_5_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[5] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

2−0 CONF_CAM_D_6_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[6] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

103MPU SubsystemsSPRU671

Table 87. Functional Multiplexing Control 6 Register (FUNC_MUX_CTRL_6)

Bits Field Description R/W
Reset
Value

31−30 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

29−27 CONF_GPIO_4_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO4 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

26−24 CONF_GPIO_6_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO6 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

23−21 CONF_GPIO_7_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO7 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

20−18 CONF_GPIO_11_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO11 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

17−15 CONF_GPIO_12_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO12 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

14−12 CONF_GPIO_13_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO13 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

11−9 CONF_GPIO_14_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO14 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

8−6 CONF_GPIO_15_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO15 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

MPU Subsystems104 SPRU671

Table 87. Functional Multiplexing Control 6 Register (FUNC_MUX_CTRL_6) (Continued)

Bits
Reset
ValueR/WDescriptionField

5−3 CONF_RX3_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to UART3.RX at reset.

The control for this I/O is forced to 000 at reset and in
compatibility mode.

R/W 0x0

2−0 CONF_TX3_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to UART3.TX at reset.

The control for this I/O is forced to 000 at reset and in
compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

105MPU SubsystemsSPRU671

Table 88. Functional Multiplexing Control 7 Register (FUNC_MUX_CTRL_7)

Bits Field Description R/W
Reset
Value

31−21 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

20−18 CONF_ARMIO_2_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to MPUIO2 at reset

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

17−15 CONF_ARMIO_4_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to MPUIO4 at reset

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

14−12 CONF_ARMIO_5_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to MPUIO5 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

11−9 CONF_GPIO_0_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO0 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

8−6 CONF_GPIO_1_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO1 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

5−3 CONF_GPIO_2_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO2 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

2−0 CONF_GPIO_3_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO3 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

MPU Subsystems106 SPRU671

Table 89. Functional Multiplexing Control 8 Register (FUNC_MUX_CTRL_8)

Bits Field Description R/W
Reset
Value

31−30 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

29−27 CONF_ARM_BOOT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MPU_BOOT at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

26−15 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

14−12 CONF_WIRE_NSCS3_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.CS3 at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

11−9 CONF_WIRE_NSCS0_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.CS0 at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

8−6 CONF_WIRE_SCLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.SCLK at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

5−3 CONF_WIRE_SDO_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.SDO at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

2−0 CONF_WIRE_SDI_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.SDI at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

107MPU SubsystemsSPRU671

Table 90. Functional Multiplexing Control 9 Register (FUNC_MUX_CTRL_9)

Bits Field Description R/W
Reset
Value

31−30 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

29−27 CONF_UARTS_CLKREQ_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to
UART3.CLKREQ at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

26−24 CONF_MCSI1_DOUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI1.DOUT
at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

23−21 CONF_TX1_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART1.TX at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

20−15 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

14−12 CONF_RTS1_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART1.RTS at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

11−6 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

5−3 CONF_MCBSP3_CLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to
MCBSP3.CLKX at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

2−0 CONF_COM_
SHUTDOWN_R

These bits control the multiplexing on the
OMAP5910 I/O, which defaults to
RST_HOST_OUT at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

MPU Subsystems108 SPRU671

Table 91. Functional Multiplexing Control A Register (FUNC_MUX_CTRL_A)

Bits Field Description R/W
Reset
Value

31−27 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

26−24 CONF_MMC_DAT1_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MMC.DAT1 at
reset.

As long as the STATIC_VALID pin is sampled high
upon reset, the control for this I/O is force to 000
at reset and while in compatibility mode.
STATIC_VALID must sample high at reset for the
associated OMAP5910 pin to function properly.

R/W 0x0

23−21 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

20−18 CONF_MMC_DAT2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MMC.DAT2 at
reset.

As long as the STATIC_VALID pin is sampled high
upon reset, the control for this I/O is force to 000
at reset and while in compatibility mode.
STATIC_VALID must sample high at reset for the
associated OMAP5910 pin to function properly.

R/W 0x0

17−15 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

14−12 CONF_CLK32K_OUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CLK32K_OUT
at reset.

The control for this I/O is forced to 000’at reset
and in compatibility mode.

R/W 0x0

11−9 CONF_MCSI1_DIN_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI1.DIN at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

8−6 CONF_MCSI1_BCLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI1.CLK at
reset.

The control for this I/O is forced to 000’at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

109MPU SubsystemsSPRU671

Table 91. Functional Multiplexing Control A Register (FUNC_MUX_CTRL_A) (Continued)

Bits
Reset
ValueR/WDescriptionField

5−3 CONF_MCSI1_SYNC_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI1.SYNC at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

2−0 CONF_UARTS_CLKIO_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to BCLK at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

Table 92. Functional Multiplexing Control B Register (FUNC_MUX_CTRL_B)

Bits Field Description R/W
Reset
Value

31−21 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

20−18 CONF_COM_MCLK_REQ_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to
UART2.CLKREQ at reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

17−15 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

14−12 CONF_MCSI2_SYNC_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI2.SYNC
at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

11−9 CONF_MCSI2_DOUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI2.DOUT
at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

MPU Subsystems110 SPRU671

Table 92. Functional Multiplexing Control B Register (FUNC_MUX_CTRL_B) (Continued)

Bits
Reset
ValueR/WDescriptionField

8−6 CONF_MCSI2_DIN_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI2.DIN at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

5−3 CONF_MCSI2_CLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI2.CLK at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

2−0 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

Table 93. Functional Multiplexing Control C Register (FUNC_MUX_CTRL_C)

Bits Field Description R/W
Reset
Value

31−30 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

29−27 CONF_TX2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART2.TX at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

26−24 CONF_RTS2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART2.RTS at
reset.

The control for this I/O is forced to 000’at reset and
in compatibility mode.

R/W 0x0

23−21 CONF_CTS2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART2.CTS at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

111MPU SubsystemsSPRU671

Table 93. Functional Multiplexing Control C Register (FUNC_MUX_CTRL_C) (Continued)

Bits
Reset
ValueR/WDescriptionField

20−18 CONF_RX2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART2.RX at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

17−15 CONF_MCBSP2_DOUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP2.DOUT
at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

14−12 CONF_MCBSP2_RSYNC_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP2.FSR at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

11−9 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

8−6 CONF_MCBSP2_CLKR_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP2.CLKR
at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

5−3 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

2−0 CONF_MCBSP2_DIN_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP2.DR at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

MPU Subsystems112 SPRU671

Table 94. Functional Multiplexing Control D Register (FUNC_MUX_CTRL_D)

Bits Field Description R/W
Reset
Value

31−15 RESERVED Reserved. These bits must always be written as 0. R/W 0x00000

14−12 CONF_MMC_DAT3_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MMC.DAT3 at
reset

The control for this I/O is forced to 000 at reset.

R/W 0x0

11−9 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

8−6 CONF_NFCS2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to FLASH.CS2 at
reset.

The control for this I/O is forced to 000 at reset.

R/W 0x0

5−0 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

Table 95. Pulldown Control 0 Register (PULL_DWN_CTRL_0)

Bits Field Value Description (see Note) R/W
Reset
Value

31−29 RESERVED Reserved. These bits must always
be written as 0.

R/W 0x0

28 CONF_PDEN_CAM_HS_R These bits control the pulldown
enable on the OMAP5910 I/O, which
defaults to CAM.HS at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

27−25 RESERVED Reserved. These bits must always
be written as 0.

R/W 0x0

24 CONF_PDEN_CAM_D_2_R These bits control the pulldown
enable on the OMAP5910 I/O, which
defaults to CAM.D[2] at reset.

R/W 0x0

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

113MPU SubsystemsSPRU671

Table 95. Pulldown Control 0 Register (PULL_DWN_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescription (see Note)ValueField

0 Pulldown enabled

1 Pulldown disabled

23 CONF_PDEN_CAM_D_3_R These bits control the pulldown
enable on the OMAP5910 I/O, which
defaults to CAM.D[3] at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

22 RESERVED Reserved. These bits must always
be written as 0.

R/W 0x0

21 CONF_PDEN_CAM_D_5_R These bits control the pulldown
enable on the OMAP5910 I/O, which
defaults to CAM.D[5] at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

20−17 RESERVED Reserved. These bits must always
be written as 0.

R/W 0x0

16 CONF_PDEN_MCBSP1_DIN_R These bits control the pulldown
enable on the OMAP5910 I/O, which
defaults to MCBSP1.DR at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

15−0 RESERVED Reserved. These bits must always
be written as 0.

R/W 0x0

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

MPU Subsystems114 SPRU671

Table 96. Pulldown Control 1 Register (PULL_DWN_CTRL_1)

Bits Field Value Description (See Note) R/W
Reset
Value

31−30 RESERVED Reserved. These bits must always be
written as 0.

R/W 0x0

29 CONF_PDEN_MCBSP3_CLK_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MCBSP3.CLKX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

28 RESERVED Reserved. These bits must always be
written as 0.

R/W 0x0

27 CONF_PDEN_ARM_BOOT_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MPU_BOOT at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Control for this pulldown is forced on
at reset and while in compatibility
mode.

26 CONF_PDEN_NEMU1_R This bit controls the pullup enable on
the OMAP5910 I/O, which defaults to
EMU1 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

25 CONF_PDEN_NEMU0_R This bit controls the pullup enable on
the OMAP5910 I/O, which defaults to
EMU0 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

115MPU SubsystemsSPRU671

Table 96. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

24−19 RESERVED Reserved. These bits must always be
written as 0.

R/W 0x0

18 CONF_PDEN_WIRE_SDI_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to UWIRE.SDI at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

17−15 RESERVED Reserved R/W 0x0

14 CONF_PDEN_ARMIO_2_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MPUIO2 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

13 CONF_PDEN_ARMIO_4_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MPUIO4 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

MPU Subsystems116 SPRU671

Table 96. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

12 CONF_PDEN_ARMIO_5_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MPUIO5 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

11 CONF_PDEN_GPIO_0_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO0 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

10 CONF_PDEN_GPIO_1_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO1 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

117MPU SubsystemsSPRU671

Table 96. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

9 CONF_PDEN_GPIO_2_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO2 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

8 CONF_PDEN_GPIO_3_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO3 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

7 CONF_PDEN_GPIO_4_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO4 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

MPU Subsystems118 SPRU671

Table 96. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

6 CONF_PDEN_GPIO_6_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO6 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

5 CONF_PDEN_GPIO_7_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO7 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

4 CONF_PDEN_GPIO_11_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO11 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

119MPU SubsystemsSPRU671

Table 96. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

3 CONF_PDEN_GPIO_12_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO12 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

2 CONF_PDEN_GPIO_13_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO13 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

1 CONF_PDEN_GPIO_14_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO14 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

MPU Subsystems120 SPRU671

Table 96. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

0 CONF_PDEN_GPIO_15_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO15 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

Table 97. Pulldown Control 2 Register (PULL_DWN_CTRL_2)

Bits Field Value Description (See Note) R/W
Reset
Value

31 CONF_PDEN_MCBSP2_
DOUT_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.DX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

30 CONF_PDEN_MCBSP2_
RSYNC_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.FSR at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

121MPU SubsystemsSPRU671

Table 97. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

29 CONF_PDEN_MCBSP2_
CLKX_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.CLKX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

28 CONF_PDEN_MCBSP2_
CLKR_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.CLKR at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

27 CONF_PDEN_MCBSP2_
XSYNC_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.FSX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

26 CONF_PDEN_MCBSP2_
DIN_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.DR at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

MPU Subsystems122 SPRU671

Table 97. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

25 CONF_PDEN_
ARMIO_3_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to MPUIO3 at
reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

24 CONF_PDEN_GPIO_8_R This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to GPIO.8 at
reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

23 CONF_PDEN_GPIO_9_R This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to GPIO.9 at
reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

22 CONF_PDEN_COM_
MCLK_REQ_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
UART2.CLKREQ at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

123MPU SubsystemsSPRU671

Table 97. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

21 RESERVED Reserved. These bits must always be written
as 0.

R/W 0x0

20 CONF_PDEN_MCSI2_
SYNC_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI2.SYNC at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

19 RESERVED Reserved. These bits must always be written
as 0.

R/W 0x0

18 CONF_PDEN_MCSI2_
DIN_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI2.DIN at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

17 CONF_PDEN_MCSI2_
CLK_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI2.CLK at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

16 CONF_PDEN_MMC_
DAT0_R

This bit controls the pullup enable on the
OMAP5910 I/O, which defaults to
MMC.DAT0 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

MPU Subsystems124 SPRU671

Table 97. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

15 CONF_PDEN_MMC_
CMD_R

This bit controls the pullup enable on the
OMAP5910 I/O, which defaults to
MMC.CMD_SPI.DO at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

14 CONF_PDEN_MMC_
DAT1_R

This bit controls the pullup enable on the
OMAP5910 I/O, which defaults to
MMC.DAT1 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

13 RESERVED Reserved. These bits must always be written
as 0.

R/W 0x0

12 CONF_PDEN_MMC_
DAT2_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MMC.DAT2 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

11−10 RESERVED Reserved. These bits must always be written
as 0.

R/W 0x0

9 CONF_PDEN_MCSI1_
DIN_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI1.DIN at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

125MPU SubsystemsSPRU671

Table 97. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

8 CONF_PDEN_MCSI1_
BCLK_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI1.CLK at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

7 CONF_PDEN_MCSI1_
SYNC_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI1.SYNC at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

6 CONF_PDEN_UARTS_
CLKIO_R

Reserved. These bits must always be written
as 0.

R/W 0x0

5 CONF_PDEN_UARTS_
CLKREQ_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
UART3.CLKREQ at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

4:3 RESERVED Reserved. These bits must always be written
as 0.

R/W 0x0

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

MPU Subsystems126 SPRU671

Table 97. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bits
Reset
ValueR/WDescription (See Note)ValueField

2 CONF_PDEN_RX1_R This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to UART1.RX
at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

1 CONF_PDEN_R_R This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
UART1.CTS at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

0 RESERVED Reserved. These bits must always be written
as 0.

R/W 0x0

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

Table 98. Pulldown Control 3 Register (PULL_DWN_CTRL_3)

Bits Field Value Description R/W
Reset
Value

31−14 RESERVED Reserved. These bits must always be
written as 0.

R/W 0x00000

13 CONF_PDEN_NTRST_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to TRST at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

12 CONF_PDEN_TCK_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to TCK at reset.

R/W 0x0

0 Pulldown enabled

OMAP5910 Configuration Registers

127MPU SubsystemsSPRU671

Table 98. Pulldown Control 3 Register (PULL_DWN_CTRL_3) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

1 Pulldown disabled

11 CONF_PDEN_TMS_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to TMS at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

10 CONF_PDEN_TDI_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to TDI at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

9 CONF_PDEN_CONF_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to CONF at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

8 CONF_PDEN_MMC_DAT3_R This bit controls the pullup enable on
the OMAP5910 I/O, which defaults to
MMC.DAT3 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

7−2 RESERVED Reserved. These bits must always be
written as 0.

R/W 0x0

1 CONF_PDEN_CTS2_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to UART2.CTS at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

OMAP5910 Configuration Registers

MPU Subsystems128 SPRU671

Table 98. Pulldown Control 3 Register (PULL_DWN_CTRL_3) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

0 CONF_PDEN_RX2_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to UART2.RX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Table 99. Gate and Inhibit Control 0 Register (GATE_INH_CTRL_0)

Bits Field Value Description R/W
Reset
Value

31−4 RESERVED Reserved. These bits must always be
written as 0.

R/W 0x0000000

3 CONF_HIGH_IMP3 This bit is for control of
high-impedance on MCSI1.DOUT.

R/W 0x0

0 Normal function

1 Hi-impedance

2 CONF_
SOFTWARE_PWR_R

This bit controls software gating and
inhibiting of the OMAP5910 I/O, which
are gated or inhibited by COM_PWR
status.

If the gating and inhibiting logic are
enabled by FUNC_MUX_CTRL_0
(10−13) bits and
conf_software_gate_ena_r is set to 1,
this bit controls the com_pwr gating
and inhibiting instead of device pins.

This bit has no effect in compatibility
mode.

R/W 0x0

OMAP5910 Configuration Registers

129MPU SubsystemsSPRU671

Table 99. Gate and Inhibit Control 0 Register (GATE_INH_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

1 CONF_
SOFTWARE_BVLZ_R

This bit controls software gating and
inhibiting of the OMAP5910 I/O, which
are gated or inhibited by
BFAIL/EXT_FIQ.

If the gating and inhibiting logic are
enabled by FUNC_MUX_CTRL_0
(10−13) bits and
conf_software_gate_ena_r is set to 1,
this bit controls the BFAIL/EXT_FIQ
gating and inhibiting instead of device
pins.

This bit has no effect in compatibility
mode.

R/W 0x0

0 CONF_
SOFTWARE_
GATE_ENA_R

This bit controls software gating of the
OMAP5910 I/O, which are gated or
inhibited.

If the gating and inhibiting logic are
enabled by FUNC_MUX_CTRL_0
(10−13) bits, this enables software to
control the gating and inhibiting instead
of device pins.

This bit has no effect in compatibility
mode.

R/W 0x0

OMAP5910 Configuration Registers

MPU Subsystems130 SPRU671

Table 100. Voltage Control 0 Register (VOLTAGE_CTRL_0)

Bits Field Value Description R/W
Reset
Value

31−3 RESERVED Reserved. These bits must always
be written as 0.

R/W 0x0000000

2 CONF_VOLTAGE_COMIF_R This bit controls the drive strength
of the OMAP5910 communication
processor interface I/O. This
allows the interface to be run at 1.8
V nom or 2.75 V nom.

R/W 0x0

0 Drive strength is 1.80 V

1 Drive strength is 2.75 V

At reset and in compatibility mode,
the interface is set for 2.75-V
operation. This register only
controls the interface in
OMAP5910 mode.

1 CONF_VOLTAGE_SDRAM_R This bit controls the drive strength
of the OMAP5910 SDRAM
interface I/O. This allows the
interface to be run at 1.8 V nom or
2.75 V nom.

R/W 0x0

0 Drive strength is 1.80 V

1 Drive strength is 2.75 V

At reset and in compatibility mode,
the interface is set for 2.75-V
operation. This register only
controls the interface in
OMAP5910 mode.

OMAP5910 Configuration Registers

131MPU SubsystemsSPRU671

Table 100. Voltage Control 0 Register (VOLTAGE_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

0 CONF_VOLTAGE_FLASH_R This bit controls the drive strength
of the OMAP5910 flash interface
I/O. This allows the interface to be
run at 1.8 V nom or 2.75 V nom.

R/W 0x0

0 Drive strength is 1.80 V

1 Drive strength is 2.75 V

At reset and in compatibility mode,
the interface is set for 2.75-V
operation. This register only
controls the interface in
OMAP5910 mode.

Table 101. Test Debug Control 0 Register (TEST_DBG_CTRL_0)

Bit Name Description R/W
Reset
Value

31−0 RESERVED These register is reserved for factory
testing purposes. All bits must be 0 at all
times to avoid errant behavior.

R/W 0x00000000

Table 102. Module Configuration Control 0 Register (MOD_CONF_CTRL_0)

Bits Field Value Description R/W
Reset
Value

31 CONF_MOD_UART3_
CLK_MODE_R

This bit determines the clock source of
UART3 on the OMAP5910 device.

R/W 0x0

0 12 MHz

1 48 MHz

30 CONF_MOD_UART2_
CLK_MODE_R

This bit determines the clock source of
UART2 on the OMAP5910 device.

R/W 0x0

0 32 kHz/12 MHz (see Chapter 12, UART
Devices)

1 48 MHz

OMAP5910 Configuration Registers

MPU Subsystems132 SPRU671

Table 102. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

29 CONF_MOD_UART1_
CLK_MODE_R

This bit determines the clock source of
UART1 on the OMAP5910 device.

R/W 0x0

0 12 MHz

1 48 MHz

28 MOD_MCBSP3_MODE_R This bit determines the method of frame
synchronization wrap-around used on
MCBSP3.

R/W 0x0

0 Wrap-around done in hardware external to
the McBSP.

1 Wrap-around disabled. Wrap around can
be performed within the McBSP module.

Modes documented in Chapter 9, DSP
Public Peripherals.

27−24 MOD_32KOSC_SW_R These bits determine the configuration of
the the 32-kHz oscillator. The reset
condition corresponds to a fast start-up
time.

R/W 0x0

1011 Fast start-up time

1000 Lowest-power mode

These bits are forced to 1011 during reset
and in compatibility mode. The user must
take care to program these bits
appropriately before entering native mode.

23 CONF_MOD_MMC_SD_
CLK_REQ_R

This is the functional 48-MHz clock request
for the OMAP5910 device MMC/SD
interface.

This bit resets to 0 at reset. This
corresponds to the MMC/SD clock not
being requested. Set the bit to 1 to request
the clock for the MMC/SD interface.

R/W 0x0

OMAP5910 Configuration Registers

133MPU SubsystemsSPRU671

Table 102. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

22 CONF_MOD_DPRAM_
ENABLE_R

This bit controls the DPRAM I/F of the
OMAP5910 device.

R/W 0x0

0 Normal flash interface operation

1 FLASH.CS2 assertion low is delayed to
allow for a DPRAM to be interfaced to the
flash interface of OMAP5910.

21 CONF_MOD_MSMMC_
VSS_HIZ_OVERRIDE

This bit disables the forced HI-Z on the the
MMC.DAT2 pin of the device. In order to
use this pin in a functional mode, the user
must set this bit to a 1.

R/W 0x0

20 CONF_MOD_MCBSP3_
AUXON

This bit enables the McBSP3 AUXON
functionality, which gates the functional
clock to the corresponding McBSP module.

R/W 0x0

0 The internal functional clock to McBSP3 is
active and depends upon the McBSP
configuration.

1 The internal functional clock to McBSP3 is
disabled or gated.

19 CONF_MOD_MCBSP2_
AUXON

This bit enables the McBSP2 AUXON
functionality, which gates the functional
clock to the corresponding McBSP module.

R/W 0x0

0 The internal functional clock to McBSP2 is
active and depends upon the McBSP
configuration.

1 The internal functional clock to McBSP2 is
disabled or gated.

18 CONF_MOD_MCBSP1_
AUXON

This bit enables the McBSP1 AUXON
functionality, which gates the functional
clock to the corresponding McBSP module.

R/W 0x0

0 The internal functional clock to McBSP1 is
active and depends upon the McBSP
configuration.

1 The internal functional clock to McBSP1 is
disabled or gated.

OMAP5910 Configuration Registers

MPU Subsystems134 SPRU671

Table 102. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

17 CONF_MOD_USB_W2FC_
VBUS_MODE_R

This bit determines what hardware method
is used for USB.VBUS detection.

R/W 0x0

0 The VBUS detection is under control of the
GPIO0 input.

1 The VBUS detection is under control of the
VBUS detection I/O cell.

This bit resets to 0 during reset and
compatibility mode.

16 CONF_MOD_I2C_
SELECT_R

This bit selects the I2C module
compatibility mode. This bit resets to
standard mode.

R/W 0x0

0 The I2C module is in standard mode.

1 The I2C module is in compatibility mode.

15−14 RESERVED Reserved. These bits must always be
written as 0.

R/W 0x0

13 CONF_MOD_SDRAM_
EMRS_BA1_CTRL

This bit allows the user to force the
SDRAM SDRAM.BA[1] pin to a high. With
proper disabling of SDRAM accesses from
OMAP5910, users can use this to program
the EMRS register of the SDRAM with an
MRS write instruction.

There are no hardware hooks to only
assert this when performing an MRS write.
Firmware must determine how to properly
control this.

R/W 0x0

12 CONF_MOD_COM_
MCLK_12_48_SEL_R

This bit determines if the UART2.CLKREQ
output of the OMAP5910 device is 12 MHz
or 48 MHz.

This bit resets to 0, which causes a
12-MHz clock to be seen on MCLK when
UART2.CLKREQ is low. When written to a
1, this bit causes 48-MHz clock to be seen
on MCLK when UART2.CLKREQ is low.
When 1, UART2.CLKREQ also starts the
12-MHz to 48-MHz DPLL.

R/W 0x0

OMAP5910 Configuration Registers

135MPU SubsystemsSPRU671

Table 102. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

11 CONF_MOD_USB_HOST_
UART_SELECT_R

This bit enables the multiplexing of
UART1.CTS, UART1.RX, and UART1.TX
signals to the USB_HMC host mux module.

R/W 0x0

0 UART1 uses the standard source location
as defined by the OMAP5910 functional
multiplexing.

1 UART1.TX, UART1.RX, and UART1.CTS1
are sourced from the USB_HMC module.

For details on this multiplexing please see
the USB_HMC spec.

10 RESERVED Reserved. This bit must always be written
as 0.

R/W 0x0

9 CONF_MOD_USB_HOST_
HHC_UHOST_EN_R

Enable input for functional-mode clocking
of USB_HHC

R/W 0x0

0 Internal functional mode 48-MHz and
12-MHz clocks are disabled; USB_HHC
can not function as a USB host.

1 Internal functional mode 48-MHz and
12-MHz clocks are enabled.

OMAP5910 Configuration Registers

MPU Subsystems136 SPRU671

Table 102. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

8 CONF_MOD_USB_HOST_
HMC_TLL_SPEED_R

Transceiverless link logic (TLL) USB speed
control. For HMC modes (as defined by
HMC_MODE_I and HMC_JTAG_EN_I)
where the TLL is used, determines whether
the modelling of the device pullup resistor
is on the internal D+ or internal D-signal.
The pullup is only modeled when
HMC_TLL_ATTACH_I is active. This signal
is ignored when either device drives USB
data and whenever HMC_MODE or
HMC_JTAG_EN_I specify that the TLL is
not being used.

R/W 0x0

0 When HMC_TLL_ATTACH_I is high, the
TLL is enabled, and neither the USB host
nor the external USB device attempts to
drive, the pullup is modeled on the D-signal
to indicate a low-speed device.

1 When HMC_TLL_ATTACH_I is high, the
TLL is enabled, and neither the USB host
nor the external USB device attempts to
drive, the pullup is modeled on the D-signal
to indicate a full-speed device.

OMAP5910 Configuration Registers

137MPU SubsystemsSPRU671

Table 102. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescriptionValueField

7 CONF_MOD_USB_HOST_
HMC_TLL_ATTACH_R

Transceiverless link logic (TLL) USB attach
control. For HMC modes (as defined by
HMC_MODE_I and HMC_JTAG_EN_I)
where the TLL is used, determines whether
or not the TLL models its internal
representation of USB differential data
signals with or without a pullup when
neither the internal USB host nor the
external USB device is attempting to drive
the signals. This signal is ignored when
either device is driving USB data.

R/W 0x0

0 When neither the USB host nor the
external USB device attempts to drive, no
pullup is modeled. The associated USB
host port interprets this as no attached
device.

1 When neither the USB host nor the
external USB device attempts to drive, a
pullup is modeled on either the internal
representation of D+ or D−. The associated
USB host port interprets this as an
attached device with the bus in an IDLE
condition.

6−1 CONF_MOD_USB_HOST_
HMC_MODE_R

USB_HHC port multiplexing control. See
SPRU677, USB Reference Guide, for
details. This resets to the following
configuration:

R/W 0x00

000000b USB port 0 is controlled by the USB
function, and USB ports 1 and 2 are held in
benign states.

All others: See SPRU677, USB Reference
Guide.

0 RESERVED Reserved. This bit should always be written
as 0.

R/W 0x0

http://www-s.ti.com/sc/techlit/spru677
http://www-s.ti.com/sc/techlit/spru677

Device Identification

MPU Subsystems138 SPRU671

16 Device Identification

The device identification can be done by software via two registers:

� The identification code (IDCODE) register identifies the OMAP5910
device.

� The identification die (ID) register identifies the die.

16.1 Identification Code Register

The identification code register (IDCODE), shown in Table 103, can be split
into four fields:

� VERSION number (4 bits) (MSB) 31 to 28
� PART number (16 bits) 27 to 12
� Manufacturer Identity (11 bits) 11 to 1
� Fixed LSB (1 bit) (LSB) 0

Table 103. ID Code Register (IDCODE)

Register Name Size Access Capture Value Address

IDCODE 32 R See below FFFE:D404

The TI manufacturer identity is IEEE WW defined as 000 0001 0111.

For OMAP5910 design:
ID code = xxxx 1011 0100 0111 0000 0000 0010 1111 = xb47002f

The IDCODE register bits are described in Table 104.

Table 104. ID Code Register (IDCODE) Bits

Field Binary Value Decimal Value Hex Value

Version number xxxx [31−28] x x

Part number 1011 0100 0111 0000 [27−12] 46192 0xB470

Manufacturer identity 000 0001 0111 [11−1] 23 0x17

Fixed LSB 1 1 0x1

MPU Private Peripherals Overview

139MPU SubsystemsSPRU671

16.2 Die Identification (ID)

An electrically readable die ID permits tracing of individual dies back to
manufacturing data.

The die ID is a 64-bit code.

The die ID can be read by software via the private TIPB (see Table 105).

Table 105. Die ID Address Space—Private TIPB Bridge

Device Name Start Address Size in Bytes
Data

Access

OMAP5910 Die ID FFFE:1800 4 bytes 32 LSB

OMAP5910 Die ID FFFE:1804 4 bytes 32 MSB

17 MPU Private Peripherals Overview

Three standard peripherals are attached to and accessible only by the TI925T
RISC processor private bus (TIPB) to provide housekeeping functions for the
operating system (OS) and applications. These peripherals include timers, a
watchdog timer, and interrupt handlers.

The configuration module allows the software to control the different
OMAP5910 modes. The device identification registers allow the software to
read the different OMAP5910 identification codes.

Figure 25 shows the OMAP5910 device with the MPU private peripherals
highlighted. For more information on the MPU private peripherals see:

SPRU682, OMAP Timer Reference Guide

http://www-s.ti.com/sc/techlit/spru682

MPU Public Peripherals

MPU Subsystems140 SPRU671

Figure 25. MPU Private Peripherals

MPU Core
(TI925T)

(Instruction
Cache, Data

Cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction Cache, SARAM,

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU private peripheral bus

DSP public (shared) peripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

Traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

requests

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripheral bus

McBSP2

Device identification

RTC

Interrupt handlers

I2C
µWire

Frame adjustment
counter

32

32

32

32

or 13 MHz

18 MPU Public Peripherals Overview

Figure 26 shows the OMAP5910 device with the MPU public peripherals
highlighted. For more information about the MPU public peripherals see:

SPRU681, OMAP5910 I2C Controller Reference Guide

SPRU686, OMAP5910 Micro-Wire Interface Reference Guide

SPRU684, OMAP5910 Camera Interface Reference Guide

SPRU683, OMAP5910 Inter-Processor Communications Reference Guide

SPRU682, OMAP5910 Timer Reference Guide

SPRU689, OMAP5910 PWL, PWT, and LED Reference Guide

SPRU680, OMAP5910 MMC/SD Reference Guide

SPRU677, OMAP5910 USB and FAC Reference Guide

http://www-s.ti.com/sc/techlit/spru681
http://www-s.ti.com/sc/techlit/spru686
http://www-s.ti.com/sc/techlit/spru684
http://www-s.ti.com/sc/techlit/spru683
http://www-s.ti.com/sc/techlit/spru682
http://www-s.ti.com/sc/techlit/spru689
http://www-s.ti.com/sc/techlit/spru680
http://www-s.ti.com/sc/techlit/spru677

MPU/DSP Peripherals

141MPU SubsystemsSPRU671

SPRU688, OMAP5910 HDQ/1-Wire Interface Reference Guide

SPRU687, OMAP5910 RTC Reference Guide

Figure 26. MPU Public Peripherals Area

MPU Core
(TI925T)

(Instruction
Cache, Data

Cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction Cache, SARAM,

 DARAM, DMA,
 H/W accelerators

MPU
peripheral

bridge

LCD
I/F

MPU
interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU private Peripheral bus

DSP public (shared) peripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU bus

32 kHz

1.5M bits

Traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

requests

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripheral bus

McBSP2

Device identification

RTC

Interrupt handlers

I2C
µ wire

Frame adjustment
counter

32

32

32

32

or 13 MHz

19 MPU/DSP Peripherals Overview

The OMAP5910 device has five peripherals that appear on both MPU and
DSP public peripheral buses:

� Mailbox registers for interprocessor communication
� General-purpose I/O (GPIO)
� UART1
� UART2
� UART/IrDA

http://www-s.ti.com/sc/techlit/spru688
http://www-s.ti.com/sc/techlit/spru687

Endianism Conversion

MPU Subsystems142 SPRU671

Figure 27 shows the OMAP5910 device with the MPU/DSP peripherals
highlighted. For more information on MPU/DSP peripherals see:

SPRU676, OMAP5910 UART Device Reference Guide

SPRU679, OMAP5910 GPIO Reference Guide

Figure 27. Highlight of MPU/DSP Peripherals

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

or 13 MHz

20 Endianism Conversion
The TI925T operates in little endian mode and the DSP operates in big-endian
mode, so shared data must be converted to their respective formats before
any processing is done. Table 106 and Table 107 illustrate the little- and
big-endian data formats. In each case, the data is a reference to the little-
endian format in which the bytes are numbered from right to left.

Cases when endianism must be addressed:

� When the DSP accesses outside the DSP subsystem through its MIMU
� When the MPU accesses the DSP subsystem through the MPUI

http://www-s.ti.com/sc/techlit/spru676
http://www-s.ti.com/sc/techlit/spru679

Endianism Conversion

143MPU SubsystemsSPRU671

Endian conversion is implemented between these two modules and the DSP.
The hardware converts both program code and data from big−endian to
little−endian mode when writing to the system memory and from little-endian
to big-endian mode when reading back from the system memory for all the
data access sizes when the logic is enabled.

Endian conversion is performed in hardware, so that the data swapping is
transparent to software (reduce software overhead to format the data).

A bypass path is also implemented. If this case is not covered, the swapping
logic can be disabled and the conversion handled by software.

Table 106. Little-Endian Data Format

Little-Endian Format (32-Bit Word Access)

31 24 23 16 1 8 7 0

Word 1 Word 0

Byte 3 Byte 2 Byte 1 Byte 0

AA BB CC DD

Table 107. Big-Endian Format

Big-Endian Format (32-Bit Word Access)

31 24 23 16 15 8 7 0

Word 0 Word 1

Byte 0 Byte 1 Byte 2 Byte 3

DD CC BB AA

20.1 Conversion Through the DSP MMU

Swapping buffers are implemented at the boundary between the DSP and the
DSP MMU (see Figure 28). Assuming that the OMAP5910 system memory is
organized in little-endian mode, data from and to the DSP is converted as
follows:

� Data is written from the DSP to the system memory.

In the DSP, data is organized in big-endian mode (see Table 107), but the
bytes are swapped in order to recognize the data in little-endian mode (see
Table 106).

� Data is read from the system memory to the DSP.

Endianism Conversion

MPU Subsystems144 SPRU671

In system memory, data is organized in little-endian mode, but the bytes
are swapped in order to reorganize the data in big-endian mode.

� A 32-bit word is written from the DSP to the system memory, but beginning
at an odd address (for example, 0x000002) or with the bit byte_nword set
to 0.

In the DSP, the data is organized in DSP data format (see Table 108), but
the 16-bit words are swapped in order to reorganize the 32-bit data in little-
endian mode.

� A 32-bit word is read from the system memory to the DSP, but beginning
at an odd address (for example, 0x000002) or with the bit byte_nword set
to 0.

In system memory, the data is organized in little-endian mode, but the
16-bit words are swapped in order to reorganize the 32-bit data in the DSP
data format.

Note:

16-bit word and single byte accesses are always right-justified. The swap-
ping logic is power-up disabled.

Table 108. DSP Data Format

DSP Data Format (32-Bit Word Access—
Odd Address or Enabled byte_nword Option)

31 24 23 16 15 8 7 0

Word Word 1

Byte 1 Byte 0 Byte 3 Byte 2

CC DD AA BB

Figure 28 shows the endian conversion at the DSP MMU interface boundary.
The byte and word swapping is done by decoding the data width, then
repacking the data into the appropriate formats.

The byte-steering logic provides a mechanism to convert from big to little, little
to big, or upper and lower word swap for program code and data accesses.

Endianism Conversion

145MPU SubsystemsSPRU671

Figure 28. DSP Endian Conversion, 32-Bit Aligned Data

Byte 3

Byte 2

Byte 0

Byte 1

Bytes
steering

logic
(write)

Byte 3

Byte 2

Byte 1

Byte 0

(read)
logic

Bytes
steering

(Little-endian)

DSP write swapping buffers

DSP read swapping buffers

(Big-endian)

DSP
(big-

endian)

EMIF
data

in

EMIF
data
out

Packing
and

unpacking
controls

EMIF
address

Contr.

Controls

DSP
MMU
(little-

endian)

Async
FIFO
(little-

endian)

D_out

D_in

Traffic
controller

(little-
endian)

Flash
(little-

endian)

endian)
(little-

SDRAM

Internal
SRAM
(little-

endian)

Note: The steering logic puts the byte/word/double-word in appropriate formats.

20.2 Conversion Through the MPUI

Swapping buffers are implemented at the boundary between the DSP and the
MPUI (See Figure 29).

The word and byte swapping can be programmed so swapping is individually
controlled for MPU memory access and non-MPU memory (peripheral and
MPU register).

ETM Environment

MPU Subsystems146 SPRU671

Figure 29. DSP Endian Conversion, MPUI Port Boundary

MPU bus

System
DMA

controller
(little-

endian)

MPU
system

bus
(little-

endian)

MPUI
port

interface

Control

Bytes
steering

logic
(write)

Byte 1

Byte 0

System
DMA

bus

steering
logic

(read)

Bytes

Controls

(Little-endian)

Byte 0

Byte 1

(Big-endian)

MPUI write swapping buffers

MPUI read swapping buffers

16

DSP

MPUI
port

DSP TI
peripheral

bus

Note: The steering logic puts the byte/word/double-word in appropriate formats.

The MPUI port has a 16-bit data bus, thus all 32-bit accesses are divided into
two 16-bit accesses. 16-bit word swapping and byte swapping are
programmable.

By default:

� Byte swapping is disabled for all accesses.
� 16-bit word swapping is enabled for all accesses.

21 ETM Environment

The OMAP5910 device has an embedded trace macrocell (ETM) to provide
instruction and data trace capabilities of the TI925T processor. ETM9 in large
configuration uses an 8-bit data output. The instruction trace shows the
instruction flow of the MPU. The data trace shows the data access results after
the MPU executes load and store operations.

ETM Environment

147MPU SubsystemsSPRU671

21.1 ETM Features

The ETM has the following features:

� Instruction/data trace
� 8-bit trace packet width
� 45-byte trace packet capture FIFO
� Eight pairs of address comparators for trace trigger
� Height comparators for trace trigger
� Four 16-bit counters
� 3-state sequencer (state machine)

21.2 ETM Interface

The ETM logical signal interface contains 13 trace interface pins and nine
JTAG interface pins. The ETM trace interface has the following signals:

� TRACEPKT[0..7]

The TRACEPKT signals comprise the 8-bit data trace packets (packaged
address and data information).

� PIPESTAT[0..2]

The PIPESTAT signals are used to output the MPU pipeline at the
MPU execute stage on every TRACECLK and are used by software to
reconstruct the compressed trace output.

� TRACESYNC

The TRACESYNC signal is used to indicate when the first of multiple
packets are to be output on the TRACEPKT bus.

� TRACECLK

The TRACECLK operates at one of two frequencies:

� The same frequency as the MPU
� The MPU frequency divided by two (half-rate clocking)

When this rate is selected, the trace port analyzer (TPA) samples
the trace data signals on both the rising and the falling edges of the
TRACECLK. Bit 13 of the ETM control register enables selection of
this rate.

The ETM trace signals are multiplexed with the camera interface pins on the
OMAP5910 device. The default value upon reset is the camera interface.

ETM Environment

MPU Subsystems148 SPRU671

21.3 Operation

Figure 30 shows how the OMAP5910 ETM is used in a system setup for
capture of trace data.

Figure 30. Required System for ETM Usage

Agilent (HP)
Trace Port

Analyzer (TPA)
E5903A 301

PC with
TI CCS ver 2.0

or later

XDS 510
(or equivalent

JTAG
controller)

ETM signals JTAG signals

ETM

MPU

OMAP 5910

Ethernet

The TI Code Composer Studio� Integrated Development environment (IDE)
software, trace port analyzer (TPA), and the emulation probe hardware are
used for tracing and displaying the MPU operation.

Agilent provides two types of trace port equipment:

� Dedicated trace port analyzer (TPA) (E5903A #301)

� A 16700A series logic analyzer used with an analysis probe
(E9595A#002)

The Code Composer Studio IDE provides support only for the TPA setup.

The Code Composer Studio IDE provides a complete interface to the ETM,
including the setup of the trace registers, trigger points, and sequencing of
trace operations. When a trace trigger occurs, Code Composer Studio IDE
decompresses and formats the trace information for display. In addition, when

ETM Environment

149MPU SubsystemsSPRU671

the TI software development tools are used, Code Composer Studio IDE can
also correlate trace data back to the source code, thus providing complete
symbolic trace capabilities. All of the ETM functions operate in parallel with the
standard debug features provided by Code Composer Studio IDE, such as
breakpoints, single-stepping, etc.

21.4 Additional Reference Materials

Additional MPU (ARM) ETM related publications of interest include:

� ETM9 (Rev 0/0a) Technical Reference Manual (ARM DDI 0157B)

� Trace Port Analysis for ARM ETM Users Guide (Agilent Publications,
publication number E5903-97000)

� Embedded Trace Macrocell (Rev 1) Specification (ARM IHI 0014E)

Documentation is also available from Advanced RISC Machines directly via
http:\\www.arm.com.

MPU Subsystems150 SPRU671

Index

151SPRU671

Index

A
abort

CPU 55
external 62
interrupt 83
TIPB bridge 83

access
coprocessor 15 26
factor, TIPB 82
permissions, MPU MMU 43
time−out, MPU TIPB 82

address, translation, MPU MMU 44

alignment fault 60

allocation, TIPB bridge 82

B
buffer, translation look−aside (289 pin) 42

buffered writes, MPU MMU 63

C
cache, operations 35

code register, device identification, MPU private
peripherals 142

compatibility, OMAP1510/OMAP1509 97

configuration, module, MPU private peripherals 96

coprocessor, See coprocessor 15 26

coprocessor 15
access 26
cache operations 35
MPU subsystem 26
TI operations 39
translation look−aside buffer, operations 37

core, MPU 20

CP15, See coprocessor 15 26
CPU, aborts, overview 55

D
D−Cache, See data cache 22
data

access
error 58
illegal 56

cache
configuration 22
description 22
operation 22
validity 23

device identification
code register, MPU private peripherals 142
MPU private peripherals 142

die identification 143
DMA controller, MPU subsystem 71
domain

access control, MPU MMU 57
fault 61
MPU MMU 43

double−mapped space, MPU subsystem, data
cache 24

DSP
MMU

endianism conversion 147
overview 63

MPUI port 71

E
embedded trace macrocell, See ETM 149
endianism, conversion

big endian format 147
DSP data format 148

Index

152 SPRU671

little endian format 147
MPU subsystem 146
through DSP MMU 147
through MPUI 149

ETM environment
MPU 149
operation 152

external aborts
MPU MMU 62
TI925T 62

F
fault

address, MMU 56
alignment 60
checking sequence, MMU 59
domain 61
MMU 55
permission 62
status, MMU 56
translation 61

features
ETM 151
MPU

ETM environment 151
interface 71

MPU subsystem, MPU interface 71

I
identification code 142

illegal data access 56

instruction cache, MPU subsystem 21

interface
ETM 151
MPU 71

ETM environment 151

interrupt
aborts 83
handler, MPU private peripherals 86
handler (level 1), MPU private peripherals 86
handler (level 2), MPU private peripherals 88
mapping (level 1), MPU private peripherals 89
mapping (level 2), MPU private peripherals 89

L
large page access 42
level 1

interrupt handler, MPU private peripherals 86
interrupt mapping, MPU private peripherals 89

level 2
interrupt handler, MPU private peripherals 88
interrupt mapping, MPU private peripherals 89

M
manufacturer, identity, identification code 142
memory management unit, See MMU 42, 55
microprocessing unit interface, See MPUI 71
MMC/SD, pin multiplexing 98
MMU

accessible registers 44
domain access control 57
DSP, overview 63
fault checking sequence 59
faults 55
permission access 58

MPU
components, defined 19
coprocessor 15

access 26
introduction 26
register description terms 26

core, description 20
data cache

double−mapped space 24
operation 22
validation 23
overview 22

endianism conversion 146
through DSP MMU 147
through MPUI 149

ETM environment
features 151
interface 151
overview 150

instruction cache
operation 21
overview 21
validation 21

interface
features 71
overview 71

Index

153SPRU671

interrupt handlers
level 1 86
level 2 88
overview 86

interrupt mapping
level 1 89
level 2 89

MMU
accessible registers 44
address translation 44
buffered writes 63
components 42
CPU aborts 55
defined 42
domain access control 57
domains and access permissions 43
external aborts 62
fault address 56
fault checking sequence 59
fault status 56
faults 55
permission access 58
translation look−aside buffer (289−pin) 42
translation process 45
translation table 43

overview 19
posted write, TIPB 83
TIPB

access factor 82
access time−out 82
strobe frequencies 82
time−out 82

TIPB bridge
abort 83
allocation 82
overview 81
pipeline mode 83
posted write 83
word accesses 81

write buffer
operation 25
overview 24
SWAP instruction 25

MPU private peripherals
configuration module

description 96
functionality 96

device identification 142
interrupt handlers 86

interrupt mapping
level 1 89
level 2 89

level 1 interrupt handler 86
level 1/level 2 interrupt mapping 89
level 2 interrupt handler 88
overview 143

MPU/DSP, shared peripherals, overview 145

MPUI
access modes 71
endianism conversion 149
features 71

O
OMAP1510

device identification 142
die identification 143
enabling 97
OMAP1509 compatibility 97
pin multiplexing, generic 97
pulldown, control 97
pullup, control 97

operation
ETM 152
MPU subsystem

data cache 22
instruction cache 21
write buffer 25

TLB 37

P
part, number, identification code 142

permission
access, MPU MMU 58
fault 62

pin multiplexing
generic 97
MMC/SD 98

pipeline mode, TIPB bridge 83

posted write, TIPB bridge 83

public peripherals, MPU 144

pulldown, control 97

pullup, control 97

Index

154 SPRU671

S
section access 42
shared peripherals, MPU/DSP, description 145
small page access 42
strobe frequencies, TIPB, MPU 82
SWAP instruction, write buffer, MPU subsystem 25

T
TI peripheral bus, See TIPB 81, 83
TI925T, aborts 62
time−out, TIPB 82
tiny page access 42
TIPB

access time−out, MPU 82
MPU

access factor 82
strobe frequencies 82
time−out 82

pipeline mode 83
private 81
public 81

TIPB bridge
aborts 83
allocation 82
MPU subsystem 81
posted write 83

TLB, See translation look−aside buffer 37
translation

fault 61
page

large 54
small 53
tiny 52

process, MPU MMU 45
section 50
table, MPU MMU 43

translation look−aside buffer
289−pin, MPU MMU 42
lockdown operations 38
operation 37

V
validation, MPU subsystem

data cache 23
instruction cache 21

version, number, identification code 142
virtual addresses, double−mapped space, data

cache 24

W
word, access, TIPB bridge 81
write, buffer, MPU subsystem 24

	Title Page
	IMPORTANT NOTICE
	Preface
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	MPU Subsystems
	3 Instruction Cache
	3.1 Operation
	3.2 Validity

	4 Data Cache
	4.1 D-Cache Operation
	4.2 Validity
	4.3 Double-Mapped Space

	5 Write Buffer
	5.1 Operation
	5.2 SWAP Instruction

	6 Coprocessor 15
	6.1 CP15 Access
	6.2 Register Descriptions
	6.2.1 ID Register and Cache Information Register
	6.2.2 Cache Operations
	6.2.3 TLB Operations
	6.2.4 TLB Lock-Down Registers
	6.2.5 Context Switch (or PID: Process Identifier) Register
	6.2.6 TI Operations

	7 MPU Memory Management Unit
	7.1 Translation Look-Aside Buffer
	7.2 Translation Table
	7.3 Domains and Access Permissions
	7.4 MMU Program-Accessible Registers
	7.5 Address Translation
	7.6 Translation Process
	7.6.1 Translation Table Base
	7.6.2 Level-1 Fetch
	7.6.3 Level-1 Descriptor
	7.6.4 Translating Section References
	7.6.5 Level-2 Descriptor
	7.6.6 Translating Tiny Pages References
	7.6.7 Translating Small Page References
	7.6.8 Translating Large Page References

	7.7 MMU Faults and MPU Aborts
	7.8 Fault Address and Fault Status Registers (FAR and FSR)
	7.9 Domain Access Control
	7.10 Permission Access
	7.11 Fault Checking Sequence
	7.11.1 Alignment Fault
	7.11.2 Translation Fault
	7.11.3 Domain Fault
	7.11.4 Permission Fault

	7.12 External Aborts
	7.13 Buffered Writes

	8 DSP Memory Management Unit
	9 MPU Interface
	9.1 Functional Features
	9.2 MPUI Registers

	10 MPU TI Peripheral Bus Bridges
	10.1 8-Bit, 16-Bit, and 32-Bit Word Access
	10.2 TIPB Allocation
	10.3 Access Factor and Time-Out
	10.4 MPU Posted Write
	10.5 Pipeline Mode
	10.6 Abort
	10.7 TIPB Bridge Registers

	11 MPU Interrupt Handlers
	11.1 MPU Level-1 Interrupt Handler
	11.2 MPU Level 2 Interrupt Handler

	12 Level-1 and Level-2 Interrupt Mapping
	13 Interrupt Handler Level- 1 and Level- 2 Registers
	14 Configuration Module
	14.1 Configuration Register Capabilities
	14.2 OMAP5910 Native and Compatibility Modes
	14.3 OMAP5910 Generic Pin Multiplexing and Pullup/Pulldown Control
	14.4 OMAP5910 MMC/SD Pin Multiplexing

	15 OMAP5910 Configuration Registers
	16 Device Identification
	16.1 Identification Code Register
	16.2 Die Identification (ID)

	17 MPU Private Peripherals Overview
	18 MPU Public Peripherals Overview
	19 MPU/DSP Peripherals Overview
	20 Endianism Conversion
	20.1 Conversion Through the DSP MMU
	20.2 Conversion Through the MPUI

	21 ETM Environment
	21.1 ETM Features
	21.2 ETM Interface
	21.3 Operation
	21.4 Additional Reference Materials

	Index

